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Interaction model for magnetic holes in a ferrofluid layer
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Nonmagnetic spheres confined in a ferrofluid layer~magnetic holes! present dipolar interactions when an
external magnetic field is exerted. The interaction potential of a microsphere pair is derived analytically, with
precise care for the boundary conditions along the glass plates confining the system. Considering external fields
consisting of a constant normal component and a high frequency rotating in-plane component, this interaction
potential is averaged over time to exhibit the average interparticular forces acting when the imposed frequency
exceeds the inverse of the viscous relaxation time of the system. The existence of an equilibrium configuration
without contact between the particles is demonstrated for a whole range of exciting fields, and the equilibrium
separation distance depending on the structure of the external field is established. The stability of the system
under out-of-plane buckling is also studied. The dynamics of such a particle pair is simulated and validated by
experiments.
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I. INTRODUCTION

The dynamic properties of so-called magnetic holes
ferrofluid layers has been the object of increasing inte
over the past 20 years@1–23#. These systems consist o
spherical nonmagnetic particles in a carrier ferrofluid, who
size is order of magnitudes~1–100mm! above the one of the
magnetic particles~0.01 mm! in suspension. The ferrofluid
appears then as homogeneous at the scale of the
particles—holes— and their effect on the magnetic field c
be modeled as a dipolar perturbation, where the magn
moment is opposite to the one of the displaced ferrofluid@1#.
The system is generally confined between glass plate
quasi-two-dimensional layers, whose thickness slightly
ceeds the diameter of the holes. The induced dipolar inte
tions give rise to a rich zoology of physical phenomena, s
as crystallization of magnetic holes in constant or oscillat
magnetic fields@1–5#, order-disorder transitions in thos
crystals@6–9#, or nonlinear phenomena in the dynamics
those systems in low frequency oscillating fields@10–13#,
commonly described using braid theory@14–18#.

The understanding of these systems is important in r
tion to industrial ferrofluid applications@24,25#, or for their
potential use in biomedicine@26–28#. The dynamics of these
phenomena can also be used indirectly to characterize
ferrofluid’s transport properties@29#, such as its viscosity
Eventually, the ability to shape the effective pair interacti
potentials through the imposed external magnetic field ma
these systems good candidates as large analog mode
study phase transitions@30#, aggregation phenomena@19#, or
fracture phenomena in coupled granular/fluid systems.

*Electronic address: Renaud.Toussaint@fys.uio.no
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n
st

e

rge
n
tic

in
-
c-
h
g

f

a-

he

es
to

Nonetheless, despite the theoretical studies on sim
dual systems such as ferromagnetic particles in a visc
fluid @31,32#, and the extensive experimental observations
these magnetic holes, there is a lack of theory describing
detailed effective pair interaction potential. Notably, the
has been no satisfying explanation so far for the existenc
stable configurations of particle populations with finite sep
ration distances in external fields consisting of a circular
tating in-plane component and a constant normal one~re-
ported in Ref. @2#!, or for the existence of out-of-plan
buckled structures@8#, and no theoretical framework for th
influence of the ferrofluid layer thickness~separation of the
embedding plates!.

We will show here how the magnetic boundary conditio
along the confining plates lead to rich effective interacti
potentials rendering for those structures, rather than
qualitative magnetohydrodynamic effects proposed in R
@2#. In particular, we give an explanation for the existence
a finite equilibrium separation between particles. Theoret
work has already been done along this line@20#, but in a
reduced case of constant normal field. The present study
cludes a circular high frequency oscillating field in additio
The potential derived should be an essential brick in all
applications mentioned above of the magnetic holes, an
general this type of contribution of the confining structu
should be relevant to any quasi-two-dimensional~2D! colloi-
dal system with a significant dielectric or magnetic perm
ability contrast between the fluid medium and the confin
structure, as in Ref.@33#.

In this paper, we first describe the system under study
review briefly the basic modeling assumptions and stand
theory. We next derive the instantaneous pair interaction
tential with precise care for the magnetic permeability co
trast of the boundaries, and average it over the short osc
©2004 The American Physical Society07-1
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tion periods to get the effective interactions. We turn then
the properties of the equilibrium configurations, sketch
simple dynamical theory, and compare the theoretical
experimental results for the dynamics of a particle p
Eventually, the three-dimensional aspect of the ferrofluid l
ers is taken into account to evaluate both gravity-indu
corrections and the stability of the system under out-of-pl
buckling.

II. SYSTEM UNDER STUDY AND BASIC ASSUMPTIONS

The system considered consists of two nonmagn
spheres inside a ferrofluid which is homogeneous at t
scale, whose susceptibility and magnetic permeability
denoted, respectively,x f and m f5m0(11x f), where m0
54p31027 H m21. This ferrofluid is itself embedded be
tween two glass plates considered as perfectly plane, par
and nonmagnetic. The magnetic field anywhere between
glass plates is then decomposed between a uniform o
zero component resulting from the outer imposed field, p
a perturbation due to the spheres. This perturbation is es
tially dipolar: an isolated sphere in a field with a given un
form ~constant! boundary valueH at infinity provokes a
purely dipolar perturbation outside it, generated by an eff
tive dipole as shown in Fig. 1:

s52Vx̄H, ~1!

x̄5
x f

112x f /3
, ~2!

where x̄ is an effective susceptibility including a demagn
tization factor, i.e., whose precise form results when
boundary conditions for the magnetic field on the surface
the sphere are properly taken into account~see, for example
Refs.@20,34#!, SI magnetic units are adopted throughout t
paper,V5pa3/6 anda refer, respectively, to the volume an
diameter of a sphere. This result justifies the name of m
netic holes used for those nonmagnetic spheres, and s
valid to leading order when a system more complicated t
an isolated sphere is considered: it holds as soon as the
ternal magnetic fieldH can be considered as uniform at th
scale of a sphere, which will be assumed and commente
further in Sec. VI B.

The average magnetic field inside the ferrofluidH itself is
simply related to the external uniform magnetic field im
posed outside the glass platesHe through

H5Hi
e1

1

11x f
H'

e ~3!

FIG. 1. Pair of nonmagnetic particles in a ferrofluid layer a
related effective dipolar moments due to the external magnetic fi
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to fulfill the boundary conditions along the glass-ferroflu
planar interfaces—namely,Hi

e5Hi and B'
e 5B' @34,35#—

where the parallel and normal components are oriented r
tive to the glass plates.

The simplest model for a particle pair can be obtained fi
by neglecting the effect of the nonmagnetic boundaries: c
sidering a couple of two such spheres of identical mome
s with a separation vector from center to centerr, the total
interaction energy of the system is, after Bleaney a
Bleaney@34#,

U5
m f

4p
s2S 123 cos2u

r 3 D , ~4!

where r 5iri and u5/~r;s! is the angle between the fiel
and the separation vector.

We consider now external fields composed of a circu
in-plane component oscillating at frequencyn, superimposed
to a constant normal one. At high enough frequency,
relative displacement of the particles during an oscillat
period is negligible compared to its average value, and
time dependence of the separation vector can be decou
in a slow and a fast varying mode,r (t)5 r̄ (t)1dr ( r̄ ;t), with
dr50 anddr ! r̄ . Throughout the remainder of this pape
bold symbols refer to vectors, lightface ones to their nor
and the upper bar refers to averaged quantities over osc
ing time. Moreover, we will now use the additional co
straint onr that it should be in-plane under the effect of th
glass plates over the microspheres which center them at
sitions equally separated from the top and bottom bou
aries. The presence of the boundaries can indeed be re
sented by equivalent image dipoles outside the confin
plates, as established in Sec. III, which repel the dipole fr
the boundaries. This constraint will be addressed specific
in Sec. VII to show that this centering magnetic effect
valid in most work cases when no lateral confinement
exerted in the system—Sec. VII B. The possible sink cau
by gravity under the density contrast between the mic
spheres and the fluid is generally negligible—Sec. VII
Thus, in the reference frame (r̄̂ ;n̂^ r̄̂ ;n̂)—where hats refer to
unit vectors—instantaneous fields read

H5H~cosf sina;sinf sina;cosa!T, ~5!

with definition

cota5b5H' /H i5H'
e /~11x f !H i

e , ~6!

and f52pnt. Thus, defining g5/( r̄ ;r) comes cos2u
5cos2(f2g)sin2a5cos2(f2g)/(11b2), and

U~r;f!5A
a3

r 3
@2b22123 cos~2f22g!#, ~7!

with A5
m fs

2

8pa3~11b2!
5

m fpa3x2H i
2

288
. ~8!

d.
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Consider distant enough particles to prevent contact and
nificant hydrodynamic interactions during an oscillation p
riod of the external field: the neglect of inertial terms allow
one to balance magnetic interaction forces and Stokes
for both particles, which gives, to leading order indr / r̄ ,

3pha~ r̄̇1d ṙ !52“U~r!

5
3Aa3

r̄ 4
@~2b221! r̄̂13 cos~2f! r̄̂

12 sin~2f!n̂^ r̄̂ #. ~9!

Neglecting inertial terms is easily justified since a large u
per bound of Reynold’s number can be evaluated as b
Re5rxa2n/h<1024, wherex5dr /a is the relative ampli-
tude of the oscillations which will be shown straightfo
wardly to be typically below 1022, for typical diametersa
550 mm, ferrofluid’s viscosityh5931023 Pa s and den-
sity r51000 kg m23, and field oscillation frequencyn5100
Hz. Random thermal motion in the ferrofluid is essentia
irrelevant at these size scales, as will be shown in Sec. V
justifying the use of deterministic dynamics instead of
Brownian one. The above equations~7! and~9! establish that
the slow motionr̄ is driven by an effective potential obtaine
through time averaging over the oscillations of the field, i
simply usingcos2f51/2 at fixedr5 r̄ ,

3phar̄̇52“Ū~ r̄ !, ~10!

with Ū~ r̄ !5A
a3

r̄ 3
~2b221! ~11!

while small and quick elliptic oscillations are performed:

dr52
nc

n

a5

r̄ 5
@3 sin~4pnt ! r̄12 cos~4pnt !n̂^ r̄ #,

with nc5
A

4p2ha3
5

m0~11x f !x̄
2H i

2

1152ph
.

The relative magnitude of the fast oscillationsdr / r̄
5nca

5/n r̄ 5 are indeed negligible as soonn@nc.0.1 Hz for
typical ferrofluids,x f51.9, x̄50.84, h5931023 Pa s and
fields H i514 Oe.nc , inverse of the viscous relaxation tim
of the system, is the critical frequency introduced in R
@11#, above which a particle pair cannot anymore follow t
direction of an external rotating field due to the fluid drag.
this paper, we study regimes wheren>10 Hz, for which the
relative variations of the separation vector are below 1%,
focus on the slow motion of the particlesr̄ (t) driven by
Ū( r̄ ).

In this simple picture however, this average potential i
simple central one whose inverse cubic range reflects
dipole-dipole nature of the interactions, and in the absenc
any characteristic length scale, this basic model predic
very simple behavior for the particle pair. Depending on
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ratio b of the normal over the in-plane field, either the tw
particles will repel each other without end ifb.bc51/A2
or they will attract each other whenb,bc until the magnetic
forces are balanced by contact forces or very short-ra
hydrodynamic forces sensitive when particles alm
touch—when (r 2a)/a gets insignificant. This theory is ob
viously insufficient to render for the finite equilibrium sep
ration distance, sometimes at a few diameters, which is
perimentally observed for a whole range of imposed fie
@2#. A proper treatment of the boundary conditions of t
system along the glass plates, introducing the plate sep
tion as an extra length scale to the problem, will in the f
lowing section be shown to remedy this problem.

III. EFFECT OF THE BOUNDARIES ON THE
INSTANTANEOUS INTERACTIONS

The boundaries between the ferrofluid and the embedd
glass plates are supposed to be perfectly plane. The two
crospheres are supposed perfectly centered between the
plates, and the perturbation of the magnetic field due to
presence of those spheres is modeled as a perturbation d
two identical pointlike dipoless52x̄VH located at the cen-
ter of the spheres. To fulfill the magnetic bounda
conditions—i.e. the continuity ofH i and B'—along the
plates, a direct use of the image method~e.g., Weber@36#!
shows that this magnetic perturbation between the plate
equal to the field emitted, in an unbounded uniform medi
of susceptibilityx f , by an infinite series of dipoles: the tw
original ones, at locations defined as0 andx, plus an infinite
set of images for each of them corresponding to the mir
symmetry across the plane boundaries of the sources an
of the successive images. A magnification factor

k5
m f2m0

m f1m0
5

x f

x f12
~12!

multiplies the amplitude of the dipolar moments at each sy
metry operation, i.e., explicitly defined by the following co
ditions.

For any dipole sources at positionr0, with h the normal
separation vector between the plates, an infinite set of dip
images indexed byl PZ is defined by their locations an
moments—see Fig. 2:

r l2r05 lh, ~13!

sl i
5k u l usi , ~14!

sl'
5k u l u~21! u l us' . ~15!

The total interaction energy of such a system—where
dipoles do not have anymore the same moment—is~Bleaney
and Bleaney@34#!

U5
m f

8p (
bÞc

1

r bc
3 Fsb•sc2

3~sb•rbc!~sc•rbc!

rbc
2 G , ~16!
7-3
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where the sum on theb index runs over the two source d
poles and the one over thec index runs over the whole set o
sources and image dipoles, as seen in the preceding sec
separation vectors can be considered as constant ove
quick variations ofs, and the upper bars overr are implicit
for the remainder.

We will then use the following straightforward geomet
cal equalities resulting from Eqs.~1!, ~6!, ~13!–~15!: if the c
index represents thel th image of the sourceb, then

sb•sc

k u l us2
5

11~21! lb2

11b2
, ~17!

~sb•rbc!~sc•rbc!

k u l us2rbc
2

5
b2~21! l

11b2
, ~18!

r bc5u l uh. ~19!

If on contraryc represents thel th image of one source—a
indexed in Fig. 2—andb the other source, then

sb•sc

k u l us2
5

11~21! lb2

11b2
, ~20!

~sb•rbc!~sc•rbc!

k u l us2rbc
2

5
@y cosf1b~21! l l #~y cosf1b l !

~11b2!~y21 l 2!
,

~21!

r bc5Ax21 l 2h2, ~22!

where

y5
x

h
~23!

is the ratio of the particle in-plane separation distance to
plate separation. Introducing these equalities in Eq.~16! we
get

FIG. 2. Image dipoles representing the boundary conditions
01140
on;
the

e

U

2Aa3
5

I 0
so

x3
1 (

l PZ*
k u l uF I l

ss

u l u3h3
1

I l
so

~x21 l 2h2!3/2G , ~24!

I l
ss5122~21! u l ub2, ~25!

I l
so5F11~21! u l ub2

23
@y cosf1b~21! u l ul #~y cosf1b l !

~y21 l 2!
G , ~26!

where A is the constant defined in Eq.~8!. The first term,
denoted byI 0

so , is the direct interaction between the tw
sources, the next oneI l

ss corresponds to the interactions b
tween the sources and their own images, and finally the t
I l

so corresponds to the cross interactions between a so
and the images of the other one.

IV. TIME-AVERAGED EFFECTIVE INTERACTIONS

A. Derivation of the potential

The H fields consist of a perfectly circular in-plane com
ponentHi5H i@(cosf)r̂1(sinf)n̂^ r̂#, and a normal com-
ponentH' which is maintained constant. During an oscill
tion of the in-plane field, the only significantly varyin
quantity in Eq.~16! is the anglef, with once againcos2f
51/2.

The termI l
ss, i.e., the interactions between a source a

its own images, naturally does not depend on the in-pl
separation vectorx, and produces no net in-plane force. It
worthwhile to note that this would however not be the ca
for any nonplane interfaces, giving the possibility to quen
any geometrical property of the roughness of the interfa
in this potential. In the current hypothesis of purely plan
plates, this interaction term is only responsible for a norm
centering force, as will be established in Sec. VII B. For t
present purpose where the microspheres are constraine
the half-plane between the plates, the in-plane forces are
only relevant ones, and this term is simply discarded in
following.

The remaining terms produce through time average
interaction energy

Ū~x!5A
d3

h3
uS x

hD , ~27!

with A the constant defined in Eq.~8!, and a dimensionless
term

u~y!5~2b221!y23

14(
l 51

1`

k lS 11~21! lb2

~y21 l 2!3/2
2

3

2

y212~21! l l 2b2

~y21 l 2!5/2 D .

~28!
7-4
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FIG. 3. Possible types of interactions depending onb.
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The first term reduces to the expression of the first-or
theory of Eq.~11!, which is a test of self-consistency, sinc
an infinite medium would be equivalent to the absence
permeability contrast along the plates,k50. The following
ones render for the interactions between a source and
images of the other one. Due to the cylindrical symmetry
the problem with a purely circular in-plane field, this inte
action is isotropic: the dependence on the separation vecx
enters only through its normx5hy.

B. Properties of the isotropic interactions

The introduction of those images is responsible for p
sible finite separation equilibrium distances for a who
range ofb characterizing the imposed magnetic field, as
illustrated in Fig. 3: In this example, a typical susceptibil
x f51.9 was considered for the ferrofluid, i.e.,k50.49. The
four potentialsu(y) represented correspond, respectively,
b50.4, 0.58, 0.8, 2.1. They were obtained by truncating
sums in Eq.~28! to order l 510, which corresponds to
relative error lower than 1023 in u for any y.

The general typology of those potentials can be classi
in four cases as will be demonstrated in the following s
tion, separated by three particular values ofb, referred to as
bm , bc , and bu , which depend only on the susceptibilit
x f .

~a! For b,bm , u is a monotonically increasing function
and the magnetic forces are purely attractive, thus lead
any pair of spheres to contact.
01140
r

f

he
f

r

-

s

e

d
-

g

~b! For bm,b,bc , u presents a short-range attractiv
core, and presents both a maximum—an unstable equ
rium point—at some distanceyi , typically slightly below 1,
and a minimum—a stable equibrium point—at a greater d
tanceys , usually above 1.

Two locally stable equilibrium configurations are possib
in principle, depending on the ratioya5a/h of the particle
diameter to the plate separation, and of the initial parti
separationyinit : if yinit.yi , the particles should end up at th
equilibrium separationys , which since ys.1.ya corre-
sponds to an equilibrium configuration without contact b
tween the particles. If on the contraryyinit,yi , the particles
should attract each other and end up in contact atya . Since
any separationy,ya is forbidden due to contact forces, th
second case is only possible whenya,yi , i.e., when the
ratio of plate separation over particle diameter is sufficien
big. In that case, if the thermal fluctuations are large eno
to let the particles go over the energy maximum atyi with a
significant probability over the observation time, only one
the two possible equilibrium configurations will be therm
dynamically stable, and the other one will be only me
stable. The selection of stability/metastability between
two is determinated by the comparison ofu(ya) andu(ys).

~c! For bc,b,bu , u presents only a global minimum
which thus corresponds to a stable equilibrium separa
distanceys . Since generallyys.1.ya , this equilibrium
configuration corresponds to a finite separation dista
hys2a.0.
7-5
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~d! For bu,b, u is monotonically decreasing, and th
time-averaged magnetic forces are purely repulsive at
separation.

V. EQUILIBRIUM SEPARATION DISTANCE
AS FUNCTION OF THE APPLIED FIELD

The separation equilibrium distanceyeq—which is stable
or not—corresponds to the extrema of the potential, and
be obtained in principle by solving

du

dy
~yeq!50. ~29!

yeq corresponds toys or yi defined in Sec. IV B, according to
the sign ofd2u/dy2. Derivating Eq.~28! with respect to the
scaled separationy leads straightforwardly to

y4

3

du

dy
5~122b2!22(

l 51

1`

k ll l~y!@2112~21! lb2#,

~30!

l l~y!5
~y224l 2!y5

~y21 l 2!7/2
. ~31!

Equation~30! above is the sum of a term independent ofb
plus another proportional tob2. The constant term can b
shown to be positive, and the prefactor ofb2 strictly nega-
tive, for any possible (y,k), i.e., anyy.0, 0<k,1. Thus,
du/dy(y,b) is a monotonic decreasing function ofb2, equal
to 0 when

b0~y!5! 112(
l 51

1`

k ll l~y!

214(
l 51

1`

~21! lk ll l~y!

. ~32!

Thus, for a given field configurationb, and separationy,
pair interactions are attractive, i.e.,du/dy.0, if b
,b0(y), and conversely ifb.b0(y). A numerical study of
the above function, for anyk, shows thatb0(y) is monotoni-
cally decreasing frombc51/A2 to a finite positive minimum
bm(k) betweeny50 to ym(k), and next monotonically in-
creasing up to a finite limitbu(k).bc betweenym(k) and
y→1`.

These considerations allow us to obtain by a dir
graphical inversion ofb0(y) the possible rootsys(b) and
yi(b) for which the interaction forces are zero at a giv
field geometryb, as shown in Fig. 4 which is obtained fo
the particular casex f51.9, i.e.,k50.49. This nonlinear de
pendence of the equilibrium separationys(b) seems more
complex than observed in earlier experiments by Helge
and Skjeltorp@2#. This apparent discrepancy will be resolve
in the following section, which is centered on finite-tim
results.

Defining the three parametersbm ,bc ,bu identified above
as
01140
y

n

t

n

bc5b0~y50!, ~33!

bm5min
y

b0~y!5b0~ym!, ~34!

bu5 lim
y→1`

b0~y!, ~35!

these arguments prove that the pair effective potentials
long to one of the four types described in the preceding s
tion.

~a! If b,bm , the potential is purely attractive at an
separation.

~b! If bm,b,bc , there are two roots to Eq.~29!, de-
notedyi(b) andys(b): the potential is attractive belowyi or
aboveys and repulsive between both.

~c! If bc,b,bu , the potential presents a single min
mum atys(b).

~d! If b.bu , the potential is purely repulsive and there
no equilibrium separation.

The definition ofbu above—Eq.~35!—shows also clearly
that limb→b

u
2(ys)51`: in principle, it should be possible to

drive a pair of microspheres in an equilibrium configurati
with any desirable separation distance. Naturally, since
magnetic interactions decay rapidly with distance, therm
processes or any kind of external perturbation in the fl
flow, or default in the planarity of the plates, will be pre
dominant at large separations, where this theory will beco
inapplicable.

The dependence ofbc ,bu ,bm on the susceptibility of the
ferrofluid ~through the parameterk! is as follows: Replacing
l l(0)50 in Eq. ~32! shows that

bc51/A2 ~36!

independent ofk. Similarly, since limy→1`l l(y)51, bu is
easily summed as

FIG. 4. Equilibrium separation of a pair as a function of t
applied field.
7-6
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bu5
1

A2! 112(
l 51

1`

k l

112(
l 51

1`

~2k! l

5
1

A2

11k

12k
. ~37!

A numerical study ofbm shows that it decreases monoton
cally with k, down to zero whenk→1.

This shows that the range ofb over which stable equilib-
rium distances exist is larger when the susceptibility of
ferrofluid is important~k increases withx f ; bm andbu are,
respectively, decreasing and increasing withk! up to the
limiting case of an infinitely susceptible ferrofluidk→1
(x f@1), for which bm→0, bu→1`, and there is a finite
stable equilibrium separation for any ratiob.

The other limiting casek→0 is obtained directly by dis-
carding the sums in Eq.~32!—their convergence to 0 in tha
limit for any y is straightforward. This shows tha
limk→0bm5 limk→0bu5bc51/A2. Without any permeabil-
ity contrast along the glass plates, no images are felt and
first-order theory is recovered—the interactions are sim
purely attractive whenb,bc , and purely repulsive when
b.bc , with the stable regimesbP@bm ,bu# disappearing.

An overall picture of yeq(b) for different values of
k distributed regularly between 0 and 0.9 is given
Fig. 5. The sums in Eq.~32! have been truncated to orde
10, which results in an accuracy better than 1% for
displayed functionb0(y): indeed, functionsl l(y) defined in
Eq. ~31! can be bounded byul l(y)u,1/(y21 l 2)3/2, so that
u( l 5N

1` k ll l(y)u,( l 5N
1` k l ul l(y)u,kN/(12k)N3, and simi-

larly for u( l 5N
1` (2k) ll l(y)u. Thus, neglecting terms from

orderN511 in the sums, for anyk,0.9, results in a relative
error onb0(y), smaller than 0.911/(120.9)113.0.0023.

VI. FINITE-TIME THEORY AND EXPERIMENTS

A. Simple time-dependent theory

The preceding section was centered on equilibrium pr
erties of this system, but the relaxation time to reach eq
librium amounts to hours or days in certain configurations
will be shown here. In order to compare efficiently theore
cal and experimental data, we have therefore concentrate

FIG. 5. Equilibrium separation distances as a function of
applied field for various ferrofluids.
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the slow dynamics of this system, starting from hole pairs
contact under the effect of a purely in-plane fieldb50,
through the following scheme: neglecting once again the
ertial terms, Stokes drag and magnetic interactions are
anced to obtain

3pha
dx

dt
52

d

dx
Ū~x!, ~38!

where the effective potential includes the images due to
boundaries, Eq.~27!. The viscosityh above is renormalized
to take into account hydrodynamic interactions with the co
fining plates, as will be detailed further.

In dimensionless units, this equation leads to

dy

dt8
52

d

dy
u~y!, ~39!

with T5
864h

m0~11x f !x̄
2H i

2

h5

d5
, ~40!

andy(t8)5x/h, t85t/T, andu(y) is the potential defined in
Eq. ~28!. The characteristic time above lies typically arou
30 s– 5 min at usual working parameters, as will be shown
the following section, and moreover the potential wells c
be pretty flat, thus producing often metastable situations
last from minutes to hours@the driving force close to equi
librium position is proportional to the distance to it times t
second derivative of the potential in the well, andu9(ys)
→0 whenb→bu

2].
Starting from a pair configuration in contact, and setti

at time 0 the field parameters~b ratio and magnitudeH i) to
a constant value, the timet8(y) to reach a given separatio
will be directly obtained through numerical integration of th
differential equation~39!:

t8~y!52E
z5a/h

y

dz/u8~z!. ~41!

An inverse representation of the above is plotted for a f
rofluid of susceptibilityx f51.9. In Fig. 6, the solid thin line
representsy(t8) at fixed b50.8, and in Fig. 7 the dashe
lines representy(b) for four characteristic timest850.25, 1,
4, 16, slowly converging to equilibrium separationys(b),
plotted as a solid line.

To compare this with experiments, the fine tuning of t
time dependence requires a refined analysis of the hydro
namic interactions in the above: since experiments are
ried out in cells of widthh comparable with the diametera of
the embedded holes—typicallyh/a lies between 1.1 and
2—a strong hydrodynamic coupling with the confining plat
is present. Considering that both particles sit at a fixed fr
tion z of the plate separation relative to the central posit
~nonzeroz can be obtained in principle between horizon
plates due to the density contrast between the particles
ferrofluid!, these interactions are represented according
Ref. @37# by a normalization of the Stokes drag as

e

7-7
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h/h05 f „a/~h12zh!…1 f „a/~h22zh!…21, ~42!

with h0 the naked viscosity of the carrier ferrofluid, and

f ~x!5S 12
9x

16
1

x3

8
2

45x4

256
2

x5

16D
21

1O~x6!. ~43!

Two experimental cases will be considered here, whereh/a
51.4, z.0 and h/a52, z.0.14, corresponding, respec
tively, to h/h0.2.6 and 2.4. This is consistent wit
Faucheux and Libchaber’s measures for a confined Brow
motion @37# and with an experimental valueh/h0.2.4,
which we measured in theh/a51.4 case by placing 50mm
diameter particles between 70mm distant plates set up in
vertical position, without any magnetic field, and by reco
ing the motion of a single particle under the effect of buo
ancy forces. The density of the ferrofluid wasr f51.24 and
the one of the polystyrene particles wasrp.1. This value is
slightly below the theoreticalh/h0.2.6, which is consisten
with the effect of the Brownian motion of the particle alon
the normal direction, as analyzed in Ref.@37#. We have cho-
sen to useh/h052.5 in the following.

Hydrodynamic interactions between both particles w
neglected, which should be a relatively poor approximat
for particles close to contact, but become reasonable at s
rationsx/h.2 where most of the time is spent to achie
equilibrium at relatively large separations, and is theref
the most important one in the present context. The typ
magnitude of this error can be roughly estimated through
analyses performed by Dufresneet al. or Grier and Behrens
@21,38# for a close context: they derived for two particles
diametera, separated byx and at a distanceh/2 from a single
plate, the hydrodynamic corrections to the mobility to fi
order in x/a and x/h. Considering for simplicity a double
contribution for two plates relative to Eq.~13! in Ref. @21#,
contributions due to the particle-particle interactions beco

FIG. 6. Scaled separation as a function of time for various fi
magnitudes and plate separations forb5H' /H i50.8. The inset
represents the same data for longer times.
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for h/a51.4, x/h.2, less than 30% of the one due to th
plates—term 9x/16 in Eq.~43!.

We neglect also the rotational degrees of freedom of
ferrofluid itself, which can lead to the rotation of the no
magnetic spheres, and induce another type of hydrodyna
interactions between pairs of spheres: in ferrofluids subm
ted to circular magnetic fields, the rotation of the magne
particles induces asymmetric stresses in the fluid, wh
leads to a counterrotation of the magnetic holes@2,23#. The
mismatch between this rotational motion of the magne
holes and the one of the magnetites could in principle ind
a vortex in the fluid flow around each of the holes, whi
would lead to a net hydrodynamic torque over close pairs
holes. Nonetheless, with the ferrofluid and field frequen
regime used here~n f,100 Hz!, this rotational motion of the
holes is so slow that it is hardly detectable. Experimenta
with a similar ferrofluid~kerosene-based,x f50.8!, the hole’s
frequency was bounded byns,0.01 Hz. This rotational mo-

d

FIG. 7. Separation as a function of time andb for various field
configurations, times, and cell sizes: merged data and theory.
7-8
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tion was described theoretically in detail by Miguel and Ru
@23#. Through this theory, for the ferrofluid and field freque
cies used here, the frequency of the magnetic holes
straightforwardly be shown to be lower thanns,0.05 Hz.
This justifies for the present study the neglect of the
rotation-induced hydrodynamic interactions. These inter
tions would in any case lead to a purely rotational motion
the hole pair, decoupled from the purely central forces
duced by the magnetic interactions studied here. Experim
tally, some very slow rotational motion of the hole pairs w
indeed occasionally observed when the particles were c
~nonperiodic, angular velocity always lower than 0.001 H!,
but no systematic trend for its direction or velocity w
noted, i.e., this effect was beyond the experimental error

To obtain the theoretical estimate of the hole’s frequen
above, the Langevin parameter of the ferrofluid, defined@23#
asm5m0H/kBT, wherem0 is the magnetic moment of th
magnetites, is derived from the saturation magnetization
the ferrofluid and its susceptibility@39# as m53H/xM sat.
For the ferrofluid used,x51.9, M sat5200 G, H514 Oe,
and m50.26. This enables us to express the ratio of
hole’s frequency over the field’s one as@23#

ns /n f52F~m2tanhm!/~m1tanhm!520.00041,
~44!

where F520.036 is the magnetite volume fraction of th
ferrofluid. For the regimen f,100 Hz where the experiment
are carried, the sphere’s frequency is thus belowns
50.041 Hz.

B. Experimental results and scaling

We used pairs ofa550 mm diameter neutral polystyren
spheres of densityrp51, designed according to Ugelstad
technique@40#, and ferrofluids of susceptibilityx f51.9, den-
sity r f51.24, and viscosityh050.009 Pa s@41#, confined in
horizontal cells of thickness 70mm or 100mm and width of
the order of centimeters. The thickness of the cell was
tained by confining plates by quenching a few 70mm diam-
eter spheres between the two plates clamped together~these
spacers were typically half a centimeter distant from e
other!. The oscillating in-plane and constant normal fie
were generated by external coils, with a typical magnitu
H i5H0514.2 Oe, with frequencies from 10 to 100 H
Magnitudes and phase of the field are accurate up to
which also corresponds to the degree of homogeneity of
in- and out-of-plane fields throughout the entire cell. T
direction of the constant field varies slightly along the ce
with a maximum 3° misalignment from the direction norm
to the confining planes~these accuracies for the homogene
and misalignment of the field were obtained directly by co
sidering the geometry of the Helmholtz coils generating
field, whose characteristic extent is 10 cm, together wit
0.5 mm accuracy for the position of the cell inside them!.
The in-plane motion of the particles was recorded usin
microscope and a camera linked to a numerical data ana
setup. The entire experimental setup is described, for
ample, in Ref.@12#. The samples were prepared with a pu
in-plane field to bring the particles in contact, after that t
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in-plane field was maintained constant and the normal fi
was set to a constantH'

e 5(11x f)bH i . The normal field
required typically a few seconds to stabilize. Separation
tween the particles were then recorded every 10 s,
30 min. The concentration of the spheres in the entire sam
was such that the nearest sphere or spacer would sit at
20 diameters apart from the observed pair, which was su
ciently dilute not to influence the motion of the observ
pair.

1. Time-dependent result at fixed field geometry and discussio

The scaled separation as a function of time is shown
Fig. 6, for five experiments carried out atb50.8, i.e., for the
potential represented in Fig. 3~c!, which presents a single
minimum at ys(0.8)52.35. Four experiments were carrie
out in ah570 mm thick cell, two of them at identical field
amplitudesH i5H0514.2 Oe and two other atH i50.7H0 ;
0.5H0. The last experiment was carried out in ah
5100 mm thick cell, with an in-plane fieldH0. These pa-
rameters corresponded, respectively, to characteristic ti
evaluated using Eq.~40! asT532 s, 63 s, 129 s, and 192

a. Comparison with the theory.The large part of the figure
represents the short-time evolutiont,T ~typically the first
minutes! and the encapsulated part shows longer time~typi-
cally 30 min!. Every data point~separated by 10 s! was used
for the early regime, one point out of 2–12 depending on
experiment for the later one. At shorter times, the scaled d
collapse reasonably well on the theoretical curve obtai
from the theory sketched so far, solid line. The only tw
main outliers~first filled circle and triangle,t510 s) presum-
ably corresponded to a weaker normal field in the first f
seconds, until it stabilized. For illustration, the first-ord
theory neglecting the magnetic confinement leads to the
dashed curve, obtained using Eq.~41! with a bare potential
retaining only the source-source term. This too simple the
clearly differs from data both at short and large times.

b. Corrections due to buoyancy.A third dashed theoretica
curve was plotted, corresponding to a slightly refined cal
lation of the interaction potential, where buoyancy forces d
to the density contrast between ferrofluid and particles led
a shiftz of the particle pairs from the central midplane of th
cell. The relative displacementz/h due to this gravitational
correction is evaluated in Sec. VII A as 15% in the weak
fields 0.5H0 , h/a51.4 case, and in the thicker layerH0 ,
h/a52 case, whereas it should remain around 6% for
thinner cells, higher fieldH0 case. The extended potential
take this lateral shift into account is also derived in S
VII A, and the dashed curve corresponds to this potential
fixed shiftz/h514%, which is the maximum possible in th
thin cells, since it would correspond to contact of the p
ticles with one of the plates, coinciding withz/h5(1
2a/h)/2 at h/a51.4. Considering this correction, on
would expect the diamond and squares to follow the das
line, the circles to be close to the solid line, and the trian
to sit in between. This is indeed approximately the case
shorter times for the diamonds and rectangles, and the fi
7-9
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circles fit well with the centered theory, both at short a
long times. Nonetheless, it is worth noting that the op
circles collapse rather with the lower field experiments th
with the filled circles, another experiment carried with ide
tical parameters. This gives an estimate of the reproducib
of these experiments, corresponding roughly to a relative
perimental error bar of 10% for the separation at a giv
time, estimated between open and filled circle cases.
gravity-induced correction discussed above is of order
for the separation as a function of the dimensionless ti
and the effect of this shift on the magnetic interactions c
therefore hardly be distinguished from experimental disp
sion in terms of separation. Still, the renormalization of t
time due to hydrodynamic interactions with the plates wo
lead in the thick cell caseh/a52 to h/h0.1.2 if the par-
ticles were considered as centered,z/h50, instead of the
valueh/h052.5 that we used and corresponded to the p
dicted shift in that case,h/a52, z/h50.15. This gravity-
induced correction is then clearly sensible for the hydro
namic corrections, if not so much on the magne
interactions, since the above incorrect viscosityh would cor-
respond to dividingT by 2, which would double the abscis
sas of the square data points and drive them way out of
theory and rest of the data. This shows qualitatively that
shift was indeed present in casesh/a52, H0, and h/a
51.4, 0.5H0, and that particles sat close to or in contact w
a plate in this last case.

c. Corrections due to experimental error on the field d
rections.The fourth dotted curve represents the theoret
effect of a misalignment of anglea52.5° between the con
stant field and the normal direction. A direct generalizat
of Secs. II to IV to such configurations with a slightly tilte
constant field shows that the time-averaged potential is
of the form in Eqs.~25! and~26!, with a modified paramete

b85
H'

e

~11x f !@Hi1A2 sin~a!cos~u!H'
e #

.b2A2~11x f !b
2sin~a!cos~u!, ~45!

whereu is the angle between the projection of the const
field over the plane and the separation vector. This modi
interaction potential leads to a torque tending to align
particle pair with the directionu50, and a radial interac
tion force corresponding to a modifiedb8 in @b2A2(1
1x f)b

2sin(a);b#, b8 decreasing with time towards the lowe
limit as the pair aligns with the in-plane constant compon
of the field. The dotted curve corresponds to this lower lim
for a possible misalignmenta52.5°, which is evaluated from
the above asb850.68.

For the longer-time period shown in the encapsulated
of Fig. 6, an apparent equilibrium position was reached
each experiment after typically 6T—no more than a 1% rela
tive motion was noticed later when the experiments w
conducted for several hours. This equilibrium separation c
responds theoretically to the equilibrium one studied in
preceding section,ys(0.8)52.35. The high field and thin cel
experiments~filled circles! agree well~within 2%! with the
theory with a purely normal field~solid line!, but discrepan-
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cies between solid line and experiments are noticeable
longer times for the four other experiments. A comparison
the data with the dotted line shows that a misalignment
order 2.5° between constant field and normal direction
sufficient to explain these discrepancies: in these exp
ments, the particle pairs started at a relatively large angu
from the in-plane component of the constant field, which
why the unmodified theory and experimental data are cl
for short times. At longer times, the particle pairs align
with the directionu50 and the modified theoryb850.68
agree well with the data. An initial rotation of the partic
pair and subsequent locking of this direction in a particu
one was indeed observed in these experiments.

Brownian motion in the ferrofluid can be proved to b
entirely negligible for the relatively large particles and fie
we worked with, its relative magnitude compared to ma
netic interaction energy beingkT/minŪ<kT/@A(d3/h3)minu#
.1024/minu<531023 for the fields, particles, and plat
separations considered here.

2. Scaled time-dependent results at various field geometries

Experiments were carried out with in-plane field mag
tudesH0 and normal fields jumping at initial time from 0 t
b(11x f)H0 with variousb from 0 to 3.5. This was done fo
a550 mm diameter particles and plate separationh
570 mm and 100mm. The results, scaled separation as
function ofb, at four values of the scaled time are shown
Fig. 7~a! for the thinner cell. The error bars correspond to
possible misalignmenta52.5° between the constant fiel
and the normal direction: they represent the limits@b
2A2(11x f)b

2sin(a);b# for the effectiveb8 parameter as
explained in the preceding section. For the ‘‘c’’ regime b
.bc51/A2;0.7, theory and experiment agree well for a
of the tested field parameters and times.

The solid line represents the theoretical equilibrium val
studied in Sec. V. This is reached within typically 16T ~8 min
for h/a51.4, H i5H0) for b<1, or longer time at higherb.
This is the main reason why the upward curvature of
theoretical solid curve at larger values ofb is not observed in
experimental data, which correspond to finite times, and
which other types of perturbations always enter the pictur
very large times and distances.

In Fig. 7~b!, we present the results of experiments carr
out at two different plate separations, as a function of ti
and value ofb. The error bars have been omitted for rea
ability, and the experimental points represented corresp
to a constant field supposed purely normal@i.e., the abscissas
are the upper limit of the error bars in Fig. 7~a!#. The experi-
ments carried out in thicker cells, corresponding to wea
magnetic interaction forces, are more sensitive to any per
bations. The relative data collapse for both plate separat
at 0.25T andT whenb.bc nonetheless show that the sep
rations in this regime scale with plate separation, and
with particle diameter. Apart from the misalignment of th
constant field with the normal direction, a possible source
these perturbations is as follows: when the particles co
close to equilibrium, in-plane magnetic forces tend to ze
and the particle motion becomes more sensitive to any in
7-10
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INTERACTION MODEL FOR MAGNETIC HOLES IN A . . . PHYSICAL REVIEW E69, 011407 ~2004!
actions with the local environment~confining plates!—this
being of course even more the case for weaker fields
larger h/a. There seems to be a pinning~friction! of the
particles to an absolute plate position at large times. T
physical origin of this pinning is possibly due to roughne
of the plates~especially when particles are almost in co
tact!, which can quench the particles through the magn
perturbation due to this roughness~the repulsion effect of a
dipole by its images would make a particle sit preferably
positions of larger plate separation!, or alternatively when
particles are almost in contact with the plates can result in
in-plane component of the hydrodynamic coupling or cont
forces responding to buoyancy forces. Instead of plate rou
ness, the same type of qualitative effects could be due
small impurities in the ferrofluids, starting to stick to th
plates or particles at large times, when the chemical sur
tant layers around large particles and possible impuri
break apart in some points.

For the regimeb,bc , the simple theory presented he
would predict that particles stay always in contact aty
5a/d50.5 or 0.71 forb,bm;0.55, and forbm,b,bc
would either stay in contact ifa/h,yi(b) or go to the sec-
ondary minimumys(b) if yi(b),a/h ~the separation be
tween the first and second case happening atb50.61 for
a/h51/1.4 andb50.67 for a/h51/2). Particles seem in
deed to be in contact forb<0.2, but start to separate signifi
cantly well beforebm . We note also that this separatio
seems grossly to be proportional to the particle diame
when b<0.3, where some finite separation can already
observed—ordinates of opened and filled symbols are m
tiples of each other through a factor 100/70—and prop
tional to plate separation in the regimebm,b,bc . This
shows that an extra physical effect that was not taken
account here generated repulsive forces, whose range is
but scales with the particle diameter. This effect suppres
then the short-range attraction in the regimebm,b,bc , so
that the particle jumps directly toys(b), which is always a
stable minimum and not a metastable one. Forb,bm , this
extra effect starts to separate the particles in proportion
particle diameter. The physical origin of this short-range
pulsion should not be the particle-particle hydrodynamic
teractions, which should slow down the relative moti
rather than result in a net repulsion—see Refs.@38,42#. A
probable candidate for this repulsion is rather the magn
effect of the finite size of the spheres, particularly sensi
when particles are close to contact. Even if an isolated n
magnetic sphere generates a purely dipolar perturba
when it is isolated in a homogeneous susceptible medi
this dipolar perturbation does not fulfill the boundary con
tions along the surface of another magnetic sphere, s
ciently close of the first one to feel the heterogeneity of
perturbation at the scale of its diameter, which is natura
the case at a finite separation/diameter ratio. To model
short-range repulsion requires accounting for the magn
perturbation generated by this nonpointlike character of cl
enough spherical particles. Though this can be performed
a simple image method for pairs of disks in 2D, one c
show that this does not extend to pairs of spheres in 3D,
the proper mathematical description of this perturbation
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quires the use of a series of spherical harmonics, which
not performed in the present study. To conclude this disc
sion, we note that this correction seems to be negligible
separations exceeding the sphere diameterx/a.2, as shows
the agreement between experimental data and the pre
theory whenb.bm .

Finally, we note that the present results are not contra
tory with similar experiments carried out in Ref.@2# with a
slightly different ferrofluid, plate separation, and partic
size, where it was reported that the equilibrium particle se
ration is approximately linear inb once the particles start to
separate; for example, this is also the case with the pre
ferrofluid, in the particular caseh/a51.4 in the regime 0.3
,b,1—see the filled triangles or theoretical curve in F
7~a!. This linear property is however shown here to be
mere coincidence, for this does not hold in the sameb re-
gime forh/a52, or for anyh/a whenb.1, whereys(b) is
curved upwards, and any resulty(b,t) observed at a given
finite time t is curved downwards.

VII. GENERALIZATION TO QUASI-2D SYSTEMS

A. Gravity-induced corrections

Although the effect of the dipolar images in the confinin
plates tends to center particles at a midplane position,
density contrast between the ferrofluid and particles tend
drive the particle out of it for large enough particles. A
estimation of this effect can be obtained by considering
each particle the sole effect of its own images plus buoya
forces—for the simple estimation we look at here, we w
neglect the coupling between one source and the image
the other. Extending the analysis performed in Secs. III a
IV A to a single dipole lying at a vertical distancez from the
center between two horizontal plates, we directly have

Ūshifted~z!5A
a3

h3
ushiftedS z

hD , ~46!

ushifted~s!5 (
l PZ*

k u l u 122~21! lb2

u l 2@11~21! l 11#su3
. ~47!

This potential can be shown to be always centering for a
value of b, i.e., to have a single minimum ins50 and to
diverge to infinity ats560.5—plate contact for very smal
particles. Equilibrium between gravity forces and magne
interactions between the dipole and its images leads to

dŪshifted

dz
5V~rg2r f !, ~48!

i.e.,

du

ds
5

48~rg2r f !gh

m f x̄
2H i

2

h3

d3
. ~49!

For small separations~i.e, small particles or strong enoug
fields!, a Taylor expansion to first order around the plat
center gives
7-11
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du

ds
596C~k!~112b2!usu, ~50!

C~k!5 (
nPN

k2n11/~2n11!5, ~51!

which is valid up to 25% fors,0.1. Thus, the displacemen
looked for can be evaluated as

s5z/a5
~rg2r f !gh

2C~k!~112b2!m f x̄
2H i

2

h3

a3
~52!

when this quantity does not exceed 0.1, or directly us
Eqs.~49! and~50! otherwise. For the ferrofluid and particle
we used, this led, respectively, forh570 mm, H i
5H0, 0.7H0, or 0.5H0 and h5100 mm, H i5H0 to s
50.06, 0.10, 0.15, and 0.15.

The magnetic interaction potentials were unaffected up
1% in thes50.06 vertical shift case, and the dashed curve
Fig. 6 was obtained by considering particles at a fixeds
50.14 out-of-midplane shift, using a generalized poten
obtained for a configuration sketched in Fig. 8 through
extension of the method used in Secs. III and IV A as

us
pair~y!5~2b221!y2314(

l 51

1`

k lS 11~21! lb2

@y21ms~ l !2#3/2

2
3

2

y212~21! lms~ l !2b2

@y21ms~ l !2#5/2 D , ~53!

ms~ l !5 l 1s@11~21! l #. ~54!

This s50.14 value was picked to represent the magne
effect of a shift sufficient to bring particles in contact wi
the plates in theh/a51.4, 0.5H0 case. To an accuracy o
1%, the results fors50.15 were very close to this case, th
ones fors50.06 very close to pure in-plane situations, a
the situations50.10 fell roughly halfway between both, an
were therefore omitted from Fig. 6 for readability.

B. Stability of the plane solutions and buckled configurations

When particles are sufficiently small or fields sufficien
high, the preceding section establishes that the confin
plates have an effective repulsive effect on an isola
particle, which is therefore centered on midplane. In the c
of a pair of particles, the interactions between one source
the images of the other one might nonetheless modify
picture and make the plane solutions described in this pa
unstable, as have been observed in some experiments
glecting gravity, we will here generalize the interactio

FIG. 8. Shifted hole pairs considered.
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potential to configurations where particle pairs are allow
to tilt on both sides of the midplane, i.e., where both a
displaced by the same distancez on both sides of it—cf. Fig.
9. We consider only symmetric situations due to the sy
metry of the problem under parity in the absence of gra
tational forces. The effective interaction potential is o
tained similar to the plane one, and comes asŪ(x,z)
5A(a3/h3)u(x/h,z/h), where

u~y,s!52 (
l 52`

1`

k u l uS 11~21! lb2

@y21~ l 1pls!2#3/2

2
3

2

y212~21! l~ l 1pls!2b2

@y21~ l 1pls!2#5/2 D
12 (

l PZ*
k u l u@122~21! lb2#

3S 1

u l 1~22pl !su3
2

1

u l u3
D , ~55!

pl511~21! l , ~56!

which reduces to the previous in-plane solution, Eq.~28!,
whens50. Contour plots of this pair potential are displaye
in Fig. 10 for the ferrofluid used here,x f51.9, and the four
types of potentials,2b values, are identical to the one
adopted in Sec. IV B. Black and white represent, resp
tively, u520.2 and 0.5 in panels~a! and~b!, u520.2 and 1
in ~c! and ~d!, and the gray level linear inu in between.
Out-of-plane values represented cover the whole poss
range 0<s<0.5 in ~c! and ~d!, and are restricted to 10%
from the midplane in~a! and~b!. The in-plane configurations
correspond to the bottom axis of those graphs.

In-plane solutions are in principle locally stable
]2u/]s2(y,0).0, otherwise particle pairs will tend to tilt
For both first cases,b,bc , we note that]2u/]s2.0 for any
possible (y,s), and any tilt is restored by the magnetic ima
effect; the plane configurations are indeed stable. As soo
b.bc , besides the minima (y,s)5(ys,0) or (1`,0) in ~c!
or ~d! case, another local minimum appears at a cert
(y,s)5„0,se(b)…: particles can be stable at a finite distan
on top of each other—the pair tends to align with the lar
normal field— or if they are close enough to be attracted
this potential minimum but too large@a.se(b) and a
.h/2], contact forces between them and with the confin
plates will attract them to a buckled configuration where b
particles are in contact with each other, and with one diff
ent plate each. Note that 0,se(b),0.5, i.e., very small par-
ticles, a!h, at this second minimum would sit on top o
each other, neither in contact between them nor with

FIG. 9. Tilted hole pairs considered.
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FIG. 10. Contour plots of the interaction potential as a function of in-plane separationy and tilt coordinates.
a
ra

in
o
o
n
te
ra

i-
up

m
al

n,

ra-
in
m

s
the

of

are
er-
plates. The criterion to determine whether particles are
tracted by the in-plane solution, or the buckled configu
tions, is to determine whether the present (y,s) lie in the
basin of attraction of one minimum or the other. Both bas
of attraction are separated by a ridge of the potential,
which u decreases under the effect of any perturbation
(y,s) apart from the ones directed exactly along its gradie
This boundary between both basins of attraction, no
yl(s,b), was determined numerically and plotted as the g
solid line in Figs. 10~c! and 10~d!. We note that the whole
axis (y,0) lies in the basin of attraction of the plane min
mum, so any particle pair starting with no tilt should end
so. However, at short enough distancesy in a c field, or at
any in-plane distance in ad field, certain configurations with
a finite tilt are attracted by the normal-aligned pair minimu
and will end up in a buckled contact configuration or norm
aligned pair. We have determined for everyb the maximum
01140
t-
-

s
n
f
t.
d
y

,
-

ym(b)5maxsyl(s,b). For a givenb, when y.ym(b), any
tilted configuration will be attracted by the in-plane solutio
whereas for certain finite tilts at close enoughy,ym(b), the
pairs will be attracted towards buckled in-contact configu
tions. The functionym(b) is displayed as the dashed curve
Fig. 11—the solid curve is a reminder of the equilibriu
in-plane distancesys(b),yi(b) determined in Sec. V. The
function ym(b) diverges whenb→bu

2 , illustrating the fact
that in anyd-type field, configurations with out-of-plane tilt
s close to 0.5, i.e., both particle centers almost along
plates~for small enough particles! will be attracted by the
normal-aligned pair mode.

This effect is believed to be responsible for the lattices
buckled chains of particles in contact observed in Ref.@8#.
These were observed in pure normal fields~b51`!, and the
nontrivial character of the lattices, being hexagonal or squ
instead of triangular lattices characteristic of attractive int
7-13



u
wn
ra
th
um
a
er

as
e
d
c

er
ha
a

nt

te
ld

riv-
er-
on
pair

on
ch
ple
in-
he
by
led

ate
of

was
ed
nd
s-

e at
cle
con-
n

b-
ces
of
tail

a
ic

ll
of

ood
tion
ple,
ted

s of
ete
ing
ed
ns.

TOUSSAINT et al. PHYSICAL REVIEW E 69, 011407 ~2004!
actions at any range, can be qualitatively explained by fr
tration effects: neighboring particles tend to sit in top-do
contact configurations, but top-top or down-down configu
tions are repulsive—cf. shifted potential developed in
preceding section—and therefore lattices with noneven n
ber of particles along the loops, as the triangular one,
disfavored in comparison with those involving even numb
in loops, such as the square or hexagonal ones.

Eventually, the local stability of a plane configuration w
investigated in fields ofc or d type: the second derivativ
]2u/]s2 is positive ats50 for large enough distances, an
small out-of-plane tilts will be restored by magnetic intera
tions, but below a certainy,yp(b), ]2u/]s2(y,s50),0,
and the in-plane solution will be locally unstable. Howev
the preceding section established that this out-of-plane c
acter will be transient, since this case will still be attracted
long times by the in-plane solution. This upper limityp(b)
below which in-plane configurations will go to a transie
out-of-plane regime was determined numerically for anyb
and plotted as the dash-dot curve in Fig. 11.

VIII. CONCLUSIONS

For pairs of magnetic holes in ferrofluid layers of fini
thickness, exposed to fast oscillating conic magnetic fie

FIG. 11. Stability limits of the in-plane configurations.
et
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we have established the effective interaction potential d
ing their slow motion. The importance of the magnetic p
meability contrast between ferrofluid and confining plates
these interactions was demonstrated, and the resulting
potential analytically derived. This allowed the classificati
of those interaction potentials into four types, two of whi
present a secondary minimum at a finite distance. A sim
finite-time theory for these non-Brownian microspheres,
cluding the hydrodynamic interactions of the holes with t
confining plates, was directly compared and confirmed
experimental results, through data collapse of the sca
separation as a function of scaled time, for various pl
separations and field magnitudes. The relaxation time
these systems to reach equilibrium when there is any
typically a few minutes or above. Eventually, we generaliz
the study to full three dimensions in the layer thickness, a
studied the stability of the in-plane configurations. This e
tablished that although in-plane configurations are stabl
small normal fields, or at large ones and sufficient parti
separation, hole pairs can be attracted by another stable
figuration of tilted pairs of particles with contact betwee
them and contact with one plate each.

This simple theory renders for so far unexplained o
served configurations of magnetic holes, namely, 2D latti
with finite separation or buckled lattices of tilted pairs
particles. In principle, the effect described here in de
should be important in any colloidal system confined in
layer with significant magnetic permeability or dielectr
contrast between the fluid and confining structure.

The ability to tune the equilibrium distance at wi
through the ratio of the normal over in-plane magnitude
the external field makes this magnetic hole system a g
candidate for various applications, such as the manipula
of large molecules using the magnetic holes, for exam
proteins which would be fixed to one or several holes coa
with antigens, the determination of the transport propertie
a ferrofluid, or as analog model of systems implying discr
particles of tunable interactions and hydrodynamic coupl
to the carrier fluid. The effective pair interactions deriv
here should be a fundamental brick of any such applicatio
gn.
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