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Abstract.
We have performed an experimental study of slow crack front propagation through a weak

plane of a transparent Plexiglas block. Spatial random toughness fluctuations along the weak in-
terface generate a rough crack line in pinning locally the crack front, and leads to an intermittent
dynamics of the crack front line. Using a high speed and high resolution camera we are able to
capture the features of this complex dynamics.

A new analysis procedure is proposed in order to measure the waiting time fluctuations, and
study the local burst dynamics and structure along the crackfront during its propagation. First,
we confirm previous results [1]: the fracture front dynamicsis governed by local and irregular
avalanches with very large size and velocity fluctuations, and can be described in terms of a Family-
Vicsek scaling with a roughness exponentζ ≃ 0.6 and a dynamic exponentκ ≃ 1.2. Then, focusing
in particular on the avalanches structure, we show that the system exhibits self-affine scaling with
the same roughness exponentζ for the local burst and the fracture front line itself.
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1. Introduction

Since the pioneering work of Mandelbrot, Passoja and Paullay [2], it is now well
established that crack surfaces are self-affine objects. The scaling properties of
the morphology of cracks manifest themselves through self-affine long range cor-
relations [2, 3, 4, 5, 6, 7, 8, 9] with a roughness exponent which is found to be
very robust for different materials and a broad range of length scales. However,
the physical role played by the heterogeneities which lead to these self-affine long
range correlations is not well understood.

In recent years front propagation in disordered media has become a challeng-
ing problem trying to describe the dynamics of interfaces inmany different physi-
cal systems such as crack fronts [9], magnetic domain walls [10], or wetting [11].
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Actually there exists few experimental data describing crack front propagation
through heterogeneous material, essentially due to the difficulty of making direct
observation and following the crack front line. Indeed, thecrack front line growing
in a 3d heterogeneous medium has itself a 3-d shape with different in-plane and
out-of-plane roughnesses, respectivelyζ‖ andζ⊥. Therefore, the interfacial crack
front problem simplifies the 3-d original one, both experimentally [12, 13] and
theoretically [14]. Since the crack front is constrained geometrically to lie in the
plane where the motion is driven by the stress transmitted through the two elastic
plates, it is possible to perform direct visualization and to follow the fracture
front line. So far most experiments on fracture front lines have been focused on
the fracture front line morphology leading to the estimatedroughness exponent
ζ = 0.55± 0.03 [12], followed up by a longer study leading toζ = 0.63± 0.03
[13]. Recently the interfacial crack front propagation hasstarted to be investigated
[1]. This study has shown that the fracture front line dynamics is intermittent -
the depinning on asperities triggers local instabilities-and can be described in
terms of a Family-Vicsek scaling [15] with a roughness exponent ζ = 0.6 and a
dynamic exponentκ = 1.2. In contrast to earlier numerical and theoretical studies
[8, 16, 17, 18], recent numerical simulations interpreted as a stress-weighted per-
colation problem [19] give consistent results on the experimental roughness and
dynamic exponents.

In this work, we went further on in the investigation of the local dynamics
and this study appears as the continuation of the experimental work initiated by
Måløy and Schmittbuhl [1]. In the first part, we will recall the experimental set-up
and the sample preparation that permits us the direct observation of an in-plane
crack front which propagates into the annealing plane of twotransparent poly-
methylmethacrylate (PMMA) plates [12]. It is important to underline that now,
using a really powerful high speed and high resolution camera (Photron Ultima),
we are able actually to capture the details of the complex crack front dynamics.
Then, in order to analyze the local burst dynamics and in particular to extract the
local waiting time fluctuations, we propose in the second section a new analysis
procedure. Both this analysis and the fast video recording confirm the previous
observations and results, showing that the dynamics of the fracture front is driven
by local and irregular avalanches with very large size and velocity fluctuations.
In this paper we would like to focus on the scaling of the crackfront line. We
will first confirm that the development of the crack roughnessfollows a Family-
Vicsek scaling and then examining in details the structure of the local avalanches
we will show that the system exhibits self-affine scaling with the same roughness
exponentζ for the whole set of local bursts, and for the fracture front line itself.
More details concerning the dynamics and in particular the velocity and waiting
time fluctuations will be given elsewhere [20].
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2. Experimental procedure

2.1. SAMPLE PREPARATION

Two Plexiglas plates (32× 14× 1cm & 34 × 12× 0.4cm) are annealed together
at 205◦C during 30mnunder several bars of normal pressure, in order to create a
single block with a weak interface. Before the annealing procedure both plates
are sand-blasted on one side with 50µm steel particles or 100µm glass beads.
Sand-blasting introduces a random topography which induces local toughness
fluctuations during the annealing process. In order to estimate the characteristic
size of the local heterogeneities arising from the sand-blasting process, we have
measured the profile of a sand-blasted Plexiglas surface, using a white light inter-
ferometry technique (performed at SINTEF laboratory). We found that these local
irregularities have an upper cut-off size estimated as 18± 2µm.
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Figure 1. Two dimensional map of a sand blasted PMMA surface: white patches correspond to
asperities higher than 0.85µm, which corresponds to the standard deviation of the height of this
profile.

The two key points of the procedure arethe transparencyof the material
allowing the direct observationof the fracture front, andthe random toughness
introduced along the interface which generates a rough crack line in pinning the
crack front.

2.2. MECHANICAL AND OPTICAL SET-UP

While the upper Plexiglas plate is clamped to a stiff aluminium frame, a press
applies a normal displacement to the lower one (1 cm thick) corresponding to a
crack opening in modeI configuration (pure tensile mode) at a low and constant
rate∼ 10µm.s−1.

A high speed and high resolution camera (Photron Ultima) mounted on a
microscope allows us to follow the slow crack front propagation. Using this cam-
era at a spatial resolution of 1024× 512 pixels, and an acquisition rate of 1000
f.p.s. we can follow the crack front during≃ 12s (obtaining≃ 12000 images).
In this work, we will focus in particular on a given experiment with an average
crack front speed〈v〉 = 28.1µm/s an a pixel sizea = 3.5µm. It is important
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Figure 2. Sketch of the experimental setup: a thick PMMA plate (PL) is clamped into a rigid
frame (F). A normal displacement is imposed by a press (Pr) onthe thin plate with a cylindrical
rod. A high speed and high resolution camera (C) mounted on a microscope follows the crack front
propagation.

to notice that the pixel size is smaller than the characteristic scale of these local
heterogeneities, estimated as 18± 2µm arising from the sand-blasting process. In
a forthcoming paper [20], we will present using an extended set of data that all
of these preliminary results are stable while changing the experimental conditions
(varying both the average front line speed and the pixel size).

3. Analysis procedure and results

3.1. SCALING ANALYSIS OF THE CRACK FRONT

Image analysis is performed to extract the crack front by computing the gradient
of the gray levels. A typical result is shown on figure 3. The front position being
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Figure 3. Typical example of a picture recorded by the high speed camera (Photron Ultima) during
an experiment with an average crack front speed〈v〉 = 28.1µm.s−1. The pixel size isa = 3.5µm.
During this experiment, the camera recorded in total 9000 frames with a time delay of 1ms for
each picture. The crack front propagates from bottom to top.The thick solid line represents the
interface separating the uncracked (in black) and cracked parts extracted after image analysis. We
superimpose 3 fracture front positions for later times (0.5, 1 and 2s), suggesting the crack pinning
and the burst activity.
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defined as the contrast interface between the uncracked (in black) and cracked
parts is given byy = h(x, t).

The power spectrumP(k) of the deviations from the mean front positionh(x)−
〈h(x)〉, averaged over all the crack front position detected duringan experiment (in
this case 9000 fronts), as function of the wave numberk, is shown on figure 4. The
slope of the best fitP(k) ∝ k−(1+2ζ) gives an estimation of the roughness exponent
ζ = 0.54±0.06. This value for the roughness exponent is consistent withprevious
careful estimationsζ = 0.55±0.05 [12] andζ = 0.63±0.03 [13], where it has been
extensively checked for fronts at rest over a much larger range of scales (around
3.5 decades), and using several techniques.
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Figure 4. Power spectrum of the deviations from the mean front position h(x)− 〈h(x)〉 as function
of the reduced wave numberk/ko with k0 = 2π/(3.5µm) averaged over 9000 crack front positions
detected. The lines correspond respectively to the best fitsP(k) ∝ k−(1+2ζ) of all the spectrum (dotted
line), and excluding small and high wave number, 0.25 ≥ k/ko ≥ 10−2 (dashed line). An average
over the slopes of the fits gives an estimation of the roughness exponent:ζ = 0.54± 0.06. The
reduced quantity isk0 = 2π/(3.5µm). The vertical axis is arbitrary.

Moreover, we confirm that the development of the crack roughness follows
rather well the Family-Vicsek scaling ansatz with a roughness exponentζ = 0.6
and a dynamic exponentκ = 1.2 ± 0.2. Considering the power spectrum of the
relative position∆h(x, t) = h(x, t) − hi , wherehi = h(x, ti ) is the initial front, the
Family-Vicsek scaling ansatz can be written in the following way.

P(k,∆t) = ∆t(1+2ζ)/κG(k∆t1/κ) with G(x) ∝

{

b x≪ c
x−(1+2ζ) x≫ c

where∆t = t − ti is the time delay between the analyzed images,b and c are
characteristic constants.
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Figure 5. Left: Power spectrum of the relative position∆h(x, t) as function of the reduced wave
numberk/ko with k0 = 2π/(3.5µm) for logarithmically increasing time delays∆t = t − ti, from
∆t = 20msto ∆t = 5s. Right: Data collapse for the scaling functionG(k∆t1/κ) = P(k,∆t)∆t−(1+2ζ)/κ,
showing a dynamic Family-Vicsek scaling with a roughness exponentζ = 0.54 and a dynamic
exponentκ = 1. The power spectra of the relative position∆h(x,∆t) = h(x, t) − h(x, ti) have been
averaged over 4000 different initial fronthi = h(x, ti). The dashed lines are guides for the eyes and
have a slope of -2.1. The horizontal axis correspond to reduced dimensionless quantitiesk/k0, t/t0,
with k0 = 2π/(3.5µm), and∆t0 = 1ms. The vertical axis are arbitrary.

On Fig. 5 to the left, we show the power spectrum of the relative position
∆h(x, t) for logarithmically increasing time delays∆t, from∆t = 20msto∆t = 5s,
averaged over 4000 different initial fronth(x, ti). When increasing the time delays
∆t, we observe a crossover behaviour from a flat spectrum - indicating that no
spatial correlations are present at small time delays∆t -, towards a power law
behaviour at larger times∆t, consistent with the self-affine long range correlations
previously observedP(k) ∝ k−(1+2ζ) with a roughness exponentζ = 0.54. Then,
we plot on figure 5 to the right, the scaling functionG(k∆t1/κ) = P(k,∆t)∆t−(1+2ζ)/κ

as a function ofk∆t1/κ with a roughness exponentζ = 0.54 previously measured.
A satisfying data collapse is obtained for a dynamic exponent κ = 1. Performing
the same procedure for different experiments leads to the following estimation
for the dynamic exponentκ = 1.2 ± 0.2 with a roughness exponent ofζ = 0.6,
consistent with previous experimental results [1].

3.2. WAITING TIME MATRIX W AND LOCAL FRONT VELOCITY MATRIX V

In order to study the local burst dynamics during the slow crack propagation we
have computed a waiting time matrixW(x, t). The fracture front lines extracted
from image analysis of the digital pictures (see Fig. 3) wereadded to obtain a
waiting time matrixW. This matrix has the dimension of the original image
and an initial value equal to zero. We add the value 1 to the matrix elementw
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corresponding to each pixel of the front line position detected. This procedure has
been performed for all frames of a given experiment in order to obtain the final
waiting time matrixW for each experiment. Then, a local normal speed of the
interfaceV(x, t) can be deduced by computing the matrix of the inverse waiting
time w times the ratio of the pixel sizea on the typical time between two images
δt. Therefore, we can associate to each pixel corresponding tothe crack line in
each image, a local front velocityv = a

wδt .

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

V

〈V 〉

P
(

V 〈V
〉
)

fit : P ∝  x2.6

Figure 6. Distribution of the local front velocity normalized by the average crack speedv
〈v〉 for an

experiment with an average crack front speed〈v〉 = 28.1µm/s. The solid line represents a fit for
velocities 2 times larger than the average crack front speed〈v〉 and has a slope of−2.6.

Finally, we can obtain the probability distribution functions of the local wait-
ing time w and the local front velocityv, in estimating the occurrence number
of each measured waiting time or velocity on all pixels in allfracture front line
images. A typical example of a distributionP( v

〈v〉 ) of the local front velocityv,
obtained for an experiment with an average crack front speed〈v〉 = 28.1µm/s is
shown on Fig. 6, in log-log scale. For velocities larger thanthe average crack front
speed〈v〉, we clearly observe that the local front velocities are power law distrib-
utedP(v/〈v〉) ∝ (v/〈v〉)−η with an exponentη ≃ 2.6. This power law behaviour
for the velocity distribution reveals a rich and non trivialunderlying dynamic as
one can observe on a fast video recording that the crack frontis growing through
irregular avalanches on all length scales. Since in this study we would like to focus
on the local burst dynamic, more details concerning the velocity and waiting time
fluctuations will be given elsewhere [20], and now we are going to examine in
particular the structure of the local avalanches.
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3.3. LOCAL BURST STRUCTURE

In order to analyze the local burst activity, let us considerthe velocity matrixV.
We can generate a clipped velocity matrix fromV by setting the matrix elements
v equal to one forv > C · 〈v〉 and zero elsewhere. We present on Fig. 7 the spa-
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Figure 7. Spatial distribution of clusters sizeS. White clusters correspond to velocitiesv > C · 〈v〉
with a clip levelC = 8, during an experiment with an average crack front speed〈v〉 = 28.1µm.s−1.
The pixel size isa = 3.5µm. The crack front propagates from bottom to top.

tial distribution of clusters of different sizesS obtained from the clipped matrix
for a clip levelC = 8. The white clusters correspond to velocities eight times
larger than the average front speedv

〈v〉 > C = 8, which was for this experiment

〈v〉 = 28.1µm.s−1. The clusters connected to the first and the last front, and thus
belonging to the upper and lower white parts are excluded from the analysis.
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Figure 8. Distribution of the burst sizesS for an experiment with an average crack front speed
〈v〉 = 28.1µm.s−1 and a pixel sizea = 3.5µm. The clip level used herev

〈v〉 > C = 8. Notice that
the logarithmic binning allows to extract the scaling law underlying the large statistics, over a large
range of event sizes. The dashed line represents the best fitP(S) ∝ S−γ and gives an exponent
γ = 1.7
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In Fig.8, the cluster sizesS distributionP(S) is given in a double logarithmic
scale. We clearly observe a power law behaviourP(S) ∝ S−γ with an exponent
γ = 1.7 proving that the burst dynamics occurs on all length scales. We have
checked that this critical behaviour, and in particular theexponentγ, is really
stable: normalizing by the average burst size〈S〉, we can rescale all the different
distributions corresponding to diverse experimental conditions and a wide range
of clip level values (see [20] for more details).

We expect a correlation between the burst structure on smallscales and the
self-affine scaling of the crack front line on larger scales. In order to investigate
the spatial scaling on small scales in detail, we have for each clusterS chosen the
smallest bounding box enclosing it. The size of the boundingbox gives the length
scaleLy of the clusters along the growth direction and the length scale Lx of the
clusters in the direction of the average fracture frontline.
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Figure 9. Average length scale〈Ly〉 in function of the average length scale〈Lx〉. The dashed line is
a fit to the data points forLx > 20 µmand has a slope 0.60 consistent with the roughness exponent
of the fracture front line. The dotted line represents the curve y = x and serves as a guide for the
eye.

Figure 9 shows the dependence of the average length scale〈Ly〉 as function
of 〈Lx〉 in a double logarithmic plot for the same previous experiment (〈v〉 =
28.1µm.s−1, and a = 3.5µm), for a given clip valueC = 8. We clearly see
that the avalanche clusters become anisotropic above a characteristic length scale
Ld ∼ 18µm. This typical size can be interpreted as a correlation length for the dis-
order introduced by the sand-blasting technique as we have observed previously
on Fig. 1. BelowLd the local toughness is marked by the same individual asperity
and as a result the clipped velocity bursts appear isotropic. A linear fit of the data
points forLx > 20µm gives a slope 0.60 consistent with the roughness exponent
ζ = 0.63± 0.03 of the fracture front line itself. This result shows that the sys-
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tem exhibits self-affine scaling with the same roughness exponentζ for the local
dynamic bursts as for the fracture front line itself, and brings a new confirmation
of the roughness exponent determined in such interfacial crack experiments. It
is important to note that most present theoretical and numerical works predict a
lower value for this roughness exponent [8, 16, 17, 18].

4. Conclusion

We have performed an experimental study of slow interfacialcrack front propaga-
tion. This work confirms previous experimentals results [1]: the fracture frontline
dynamics can be described in terms of a Family-Vicsek scaling with a roughness
exponentζ ≃ 0.6 and a dynamic exponentκ ≃ 1.2. Moreover, we have observed
that this dynamics is driven by local and irregular avalanches whose size and
velocity are power law distributed. We show that the dynamics and the structure
of the local bursts are playing a crucial role for the scalingand the dynamics of
the crack front itself. In particular, above a typical sizeLd ∼ 20µm, the burst
size scales differently in the direction parallel and normal to the fracturefront
with an exponent consistent with the roughness exponent of the fracture front
ζ ≃ 0.6. However, if it appears consistent to interpret this result as finite size
effect related to the disorder, more experimental work is needed to control and
change the typical disorder size, in order to be conclusive and affirm that this
cut-off length scale really corresponds to the quenched disorder correlation length
introduced by the sand-blasting procedure.

Recent simulations interpreted as a stress-weighted percolation problem [19]
give consistent results with the experimental roughness and dynamic exponent
measured, in contrast to earlier numerical and theoreticalstudies [8, 16, 17, 18].
However so far, no theory or simulations have examined the dynamics and in
particular the local burst activity of the crack line, and therefore it appears of
central importance to develop these numerical studies.

Acknowledgements

We acknowledge E.L. Hinrichsen, M. Fleissner, and SINTEF laboratories in Oslo
for their hospitality, permitting us to perform the white light interferometry mea-
surements. We also thank L. Vanel, O. Ramos, A. Hansen, E.G. Flekkøy, and J.P.
Vilotte for fruitful discussions. This work was supported by the CNRS/NFR PICS
program, and the NFR Petromax and SUP program.



INTERFACIAL CRACK FRONT PROPAGATION 11

References

1 K. J. Måløy and Jean Schmittbuhl.Phys. Rev. Lett., 87, 105502 (2001)

2 B. B. Mandelbrot, D. E. Passoja, and A. J. Paullay.Nature, 308, 721 (1984);

3 S. R. Brown and C. H. Scholz.J. Geophys. Res., 90,12575 (1985);

4 E. Bouchaud, G. Lapasset, and J. Planés.Europhys. Lett., 13, 73 (1990);

5 J. Schmittbuhl, S. Gentier, and S. Roux.Geophys. Res. Lett., 20, 639 (1993);

6 B. L. Cox and J. S. Y. Wang.Fractals, 1, 87 (1993);

7 K. J. Måløy, A. Hansen, E. L. Hinrichsen, and S. Roux.Phys. Rev. Lett., 68, 213 (1992);

8 J. Schmittbuhl, F. Schmitt, and C. H. Scholz.J. Geophys. Res., 100, 5953 (1995).

9 E. Bouchaud.J. Phys, 9, 4319 (1997).

10 S. Lemerle, J. Ferr, C. Chappert, V. Mathet, T. Giamarchi and P. Le DoussalPhys. Rev. Lett.,
80, 2849, (1998).

11 E. Rolley, C. Guthmann, R. Gombrovisch and V. Repain,Phys. Rev. Lett., 80, 2865, (1998).

12 J. Schmittbuhl and K. J. Måløy.Phys. Rev. Lett, 78, 3888 (1997);

13 A. Delaplace, J. Schmittbuhl, and K. J. Måløy.Phys. Rev. E, 60, 1337 (1999); J. Schmittbuhl,
A. Delaplace, and K. J. Måløy.In Physical Aspects of Fracture.(eds E. Bouchaud), (Kluwer
Academic Publishers, 2001)

14 J. Schmittbuhl, S. Roux, J. P. Vilotte and K. J. Måløy.Phys. Rev. Lett., 74, 1787 (1995).

15 F. Family and T. Vicsek.J. Phys. A, 18,L75 (1985).

16 J. P. Bouchaud, E. Bouchaud, G. Lapaset, and J. Planes.Phys. Rev. Lett., 71, 2240 (1993).

17 S. Roux and A. Hansen.J. Phys. I, 4, 515, (1994).

18 S. Ramanathan and D. Fisher.Phys. Rev. B, 58, 6026 (1998);

19 J. Schmittbuhl, A. Hansen and G. Batrouni.Phys. Rev. Lett., 90, 045505, (2003)

20 K. J. Måløy, S.Santucci, R.Toussaint and J. Schmittbuhl.submitted toPhys. Rev. Lett.


