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A granular instability is studied experimentally and numerically as a packing of dense granular material
positioned above a gap of air falls under gravity in a closed Hele-Shaw cell; a granular analog of the Rayleigh-
Taylor instability. A characteristic pattern of fingers separated by dilute bubbles emerges along the interface,
and, in contrast to the classical, hydrodynamic instability, a transient coarsening of the front is observed. The
emerging structures are quantified by means of Fourier analysis and quantitative agreement between experiment
and computation is shown. This analysis also reveals scale invariance of the flow structures under overall change
of spatial scale.
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Granular materials, such as grains or powders, are ubiqui-
tous in nature and are involved in a host of industrial processes
[1–3]. Improved understanding of granular flows would be
of essential importance to a range of industrial applications,
to the study of geological pattern forming processes, and, in
general, to the theoretical description of disordered media.

As grains become smaller the effect of the interstitial fluid
becomes more important. The result is a combination of dry
granular dynamics and the hydrodynamics of the fluid. These
systems give rise to a variety of exotic, and most often poorly
understood, phenomena such as fluidization [2] and bubble
instabilities [4, 5], quicksand and jet formation [6], and sand-
wich structures in systems where different particle types seg-
regate [7]. While the study of dry granular media has been ex-
tensive over the past decades, the exploration of fluid-granular
systems has been of more limited scope.

In the present Letter we study a granular analog of the
Rayleigh-Taylor instability [8]. The experimental setup con-
sists of a closed Hele-Shaw cell that confines air and fine
grains. When the cell is turned upside down we observe
the evolution of an initially sharp front formed by the falling
grains. This evolution has three stages: (1) An initial de-
compaction phase is followed by (2) the formation of vertical
fingers that organize into cusp-shaped structures, that subse-
quently develop into (3) coarser finger-bubble structures.The
last structures, seen in Fig. 1, represent a quasi steady state
where two competing mechanisms produce a characteristic
wavelength. The mechanism producing coarser scales orig-
inates as smaller bubbles, and the fingers defining them, in-
creasingly lag behind their bigger neighbors, leaving behind
a single wide finger in the process, and thereby reducing the
total number of fingers. This process resembles the coars-
ening seen in crystal growth [9]. The other mechanism, that
produces finer scales, and is active right from the start, is rem-
iniscent of the tip splitting process seen in viscous fingering.
It is manifested as thin filaments forming in the centre of the
rising bubbles.

Over the past few years a wide range of granular instabili-
ties where various structures form along fluid-grain interfaces

have been reported [4, 5, 10–13]. Notably, the patterns formed
by grains falling in a highly viscous liquid were investigated
experimentally and theoretically by Völtz et al. [14]. How-
ever, while the instability reported by Völtz shares its main
qualitative characteristics with the classical Rayleigh-Taylor
instability, i.e. a single dominating wavelength growing right
from the start in a sinusoidal fashion, our gas-grain instability
grows through coarsening cusp-structures.

The coarsening in the present structures suggests that the
process is intrinsically non-linear in the sense that linear sta-
bility analysis is not an appropriate tool to predict the (time
dependent) characteristic scale. However, the evolving struc-
tures exhibit scale invariance under change of particle size,
a feature which is supported both by observations and theo-
retical considerations. The simulations and experiments that
are employed to shed light on the phenomenon at hand agree
qualitatively, and to a significant extent, quantitatively, even
though the model neglects both granular friction and the third
dimension in the direction normal to the Hele-Shaw cell.

In the experiments the Hele-Shaw cell is made of two glass

(a) Experiment (b) Simulation

Figure 1: (a) Experimental image of a vertical Hele-Shaw cell filled
with air (white) and polystyrene beads (black) of 140 µm in diame-
ter. The cell is 56 mm wide, and was rotated 0.2 seconds ago. (b)
Simultaneous numerical snapshot of the same system.



plates sealed with a silicone gasket along the edges and held
together by clamps. The internal dimension of the cell is 56 x
86 x 1 mm. The cell is filled with air at atmospheric pressure
and monodisperse polystyrene beads, Dynoseeds TS 140-51,
with a mass density of 1.05 g/cm3. The cell may rotate 130
degrees around a hinged bar from a lower to an upper verti-
cal position where it is stopped by a bar. The rotation is per-
formed manually in about 0.2 seconds. The centrifugal forces
slow down the falling motion of the grains during the rota-
tion, even though the falling is not quite suppressed. Images
are recorded at a rate of 500 frames per second by a high speed
digital camera, Photron Fastcam-APX 120K, with a resolution
of 512x512 pixels. Fig. 1a shows an experimental snapshot
recorded 0.2 seconds after the cell reached the upright vertical
position. For the purpose of comparison with the simultane-
ous simulation shown in Fig. 1b the colors of the image are
inverted.

Numerical investigations of even moderately sized granular
systems consumes prohibitive computational resources if the
fluid dynamics is described on a sub-granular level. The nu-
merical model employed here combines a continuum descrip-
tion of the air with a discrete description of the granular phase.
The derivation and theoretical justification of the model are
presented in detail in Ref. [15, 16]. The effect of the gran-
ular phase on the air pressure is that of a deformable porous
medium locally defined by the granular packing. The granu-
lar phase is modeled as discrete particles from which a coarse
grained solid fractionρ(x, y) and a velocity fieldu(x, y) are
obtained. The continuum gas phase is described solely by its
pressureP (x, y). The inertia, and hence the velocity field of
the gas, is neglected. This is justified as long as the particle
Reynolds number is small, which is fulfilled in our case. The
pressure is governed by the equation [15, 16]
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whereφ = 1 − ρ is the porosity,κ the permeability,u the
velocity field of the granular phase, andµ the gas viscosity.
This equation is derived from the continuity of air and grain
mass, and Darcy’s law [17] with permeabilityκ. The Carman-
Kozeny relation [18] is assumed for the permeability, and the
isothermal ideal gas law for the air. The grains are governed
by Newtons second law
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ρn

, (2)

wherem is the grain mass,v is the grain velocity,FI is the
interparticle force which keeps the grains from overlapping,
ρn = ρ ρg/m is the number density, andρg is the mass den-
sity of the material which the grains are made of. Contact dy-
namics [19] is used to calculate the interparticle forceFI. The
dynamics of the grains are simplified by neglecting particle-
particle and particle-wall friction. A lower cutoff is imposed
on the solid fraction because the Carman-Kozeny relation is
not valid as the solid fraction drops below 0.25. This cut-
off causes the permeability of the most dilute regions of the

system to be slightly lower than the true permeability, which
again causes the pressure gradients, and hence the force act-
ing on the grains in these regions, to be slightly overestimated.
This is further discussed in connection with Fig. 5a.

The numerical snapshot in Fig. 1b shows a typical pattern
obtained in a simulation using grains of the same diameter
and density as in the experiment in Fig. 1a. The main features
of the experimentally observed structures, i.e. the numberof
bubbles, the tip splitting and finger nucleation processes,are
well reproduced in the simulations.

The spatio-temporal evolution of the interface in the exper-
iment and simulation is presented in Figs. 2a and 2b, respec-
tively. The interface moves upwards in these plots with a tem-
poral separation of 0.024 seconds, and the first and last inter-
faces are extracted at 0.002 and 0.290 seconds, respectively.
The interface is determined by the following procedure. A
thresholding of the numerical solid fraction field is performed
by vertical scans initiated from the top, and the interface is
defined as the nodes where the solid fraction drops below a
certain value. For the experimental data the thresholding is
performed on the pixel values of the images. There is an in-
verse relationship between the pixel values and the solid frac-
tion, i.e. dilute regions with low solid fraction appear as white
in the images with high pixel values, and vice versa.

The shape of the initial interfaces in Figs. 2a and 2b are
quite different. The initial experimental interface has noise
on all wavelengths, whereas the initial numerical interface is
virtually flat with noise dominantly at smaller wavelengths.
Perturbations introduced in the cell by the rotation and sudden
stop disturb the initial experimental interface. However,as
the instability evolves the discrepancy reduces, and the later
interfaces are more consistent.

In order to give a more quantitative comparison of the in-
terfaces, the discrete Fourier transform [20] is applied onev-
ery second interface in Fig. 2 to produce the power spectra
presented in Fig. 3. The power spectra are colored as their
corresponding interfaces, and the location of the maximum
wave number for each power spectrum is indicated by a circle.
While the maximum wave number of the numerical interfaces
moves from high values to low values, the maximum wave
number of the experimental interfaces hardly moves at all,
most likely because the experiment does not evolve from an
initially flat interface. However, the experimental and numer-
ical power spectra converge to approximately the same form
when normalized.

In order to see the coarsening of the experimental struc-
ture quantitatively we perform an average over the entire sys-
tem. The discrete Fourier transform [20] and the power spec-
trum of each horizontal line of the solid fraction is calculated.
Then the averaged power spectrum,S̄(k), is obtained by av-
eraging over these horizontal power spectra, and an average
wave number is defined as〈k〉 =

∑

k S̄(k) · k/
∑

k S̄(k).
Likewise, we define the squared standard deviationσ 2

k =
∑

k S̄(k) · k2/
∑

k S̄(k) − 〈k〉2. For the experimental data
the image pixel values are used to estimate the solid fraction.
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Figure 2: The spatio-temporal evolution of (a) the experimental inter-
face and (b) the numerical interface. The interface moves upwards,
and the temporal separation of the plots is 0.024 seconds. Notice the
emergence of new fingers on the later interfaces.

Fig. 4 shows the temporal evolution of〈k〉 andσk (inset) for
the numerical and experimental data. An additional set of ex-
perimental data are added to the plot. The numerical curve
starts out with a significantly higher wave number than the ex-
perimental curves, and it decreases monotonously until it co-
incides with the experimental curve at about 0.2 seconds, after
which the simulation and experiments show a similar coarsen-
ing behavior. No fingers are observed in the experiment until
0.06 seconds have elapsed. During this time the grains merely
form a dilute sheet of grains that appears homogeneous on the
experimental images. This particular experimental initial state
is caused by the sudden stop of the cell, and is the most prob-
able reason for the initial discrepancy between simulationand
experiment in Fig. 4. The fluctuations of〈k〉 andσk are asso-
ciated with the continuous nucleation and merging of fingers.

We investigate the behavior of the system as the overall
scale is changed. Since all length ratios and the particle num-
ber are fixed, the size of the system scales according to the
diameterd of the grains. We measure the characteristic in-
verse length scale〈k〉 as d is changed and observe a scale
invariance of the evolution. A series of seven simulations are
performed whered varies from 70 µm to 490 µm in steps of 70
µm. The size of the cell containing grains of 70 µm in diam-
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Figure 3: The temporal evolution of the interfacial power spectrum
for (a) the experiment and (b) the simulation. The times are given in
the legend box, and the circles indicate the location of the maximum
wave number for each power spectrum.
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Figure 4: Mean wave number〈k〉 and standard deviationσk (inset)
for two experiments and one simulation, all using polystyrene beads
of 140 µm in diameter.

eter is 28 x 34 mm. In these simulations we have introduced
the larger density of glass, rather than polystyrene, in order
to minimize the numerical artifacts associated with the solid
fraction cutoff in the permeability. To compare, a series of
experiments using polystyrene beads of 80, 140, 230, and 500
µm in diameter, confined in Hele-Shaw cells that scale with
d in all directions, are performed. Data-collapse plots of the
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Figure 5: Data-collapse ofd〈k〉 for a series of (a) simulations using
glass beads, and (b) experiments using polystyrene beads. The grain
diametersd are given in units of µm in the legend box. The inset
shows the evolution of〈k〉.

rescaled mean wave numberd〈k〉 are shown in Figs. 5a and
5b for the simulations and experiments, respectively. These
plots indicate that the characteristic size of the structures is
invariant when the size is measured in units ofd; the number
of grains that spans the width of the bubbles is the same for a
wide range of grain sizes.

Theoretically, the scale invariance of the productd〈k〉 may
be interpreted as follows: Compared to the other terms of
Eqs. (1) and (2) them dv/dt, FI andP∇ · u terms may be
shown to be small [21]. For that reason, these equations ex-
hibit an approximate invariance under system size scaling.If
we takeδP to be the pressure deviation from the background
pressure, express the velocity of graini asvi = δvi + u0

and the locally averaged granular velocity asu = δu + u0,
whereu0 is the constant sedimentation velocity of a close
packed system, this scaling may be expressed asx → λx,
δP → λδP , u0 → λ2u0, δu → λδu andκ → λ2κ, where
λ is a scale factor. The structure formation of the system is
governed byδu and, since this velocity scales the same way
with λ as the length scales themselves, the evolution of any
structure measured in units ofd will be scale invariant. In par-
ticular this is true for the structures measured by the length
1/〈k〉, and sod〈k〉 is scale invariant. However, the invariance
deteriorates both when particle size is increased, and whenit
is decreased. In the first case, the relative effect of granular

inertia is increased, in the second, the relative effect of the
P∇ · u term is increased.

The convergence of the numerical data-collapse is quite
good, whereas the experimental data-collapse has a wider dis-
tribution but collapses satisfactorily given the standarddevia-
tion error bars. The deviation of the 70 µm curve of Fig. 5 is
probably explained by the increase in the relative importance
of the P∇ · u-term. The divergences of the 350, 420, and
490 µm curves in the same plot arise because the bubbles in
the coarser packings disappear before they reach the surface
due to the increase ofu0 with λ2 [21]. The experimental data
presented in Fig. 5b is obtained by averaging over three ex-
periments. The standard deviation is calculated over a time
window of 0.3 seconds and is represented by the error bars.
The accuracy of the experiments is at its lowest during the ini-
tial coarsening of the structures. As the mean wave number
stabilizes around 0.2 seconds the accuracy improves, except
for the 80 µm curve. Nevertheless, the data points are, with
a few exceptions, within a distance of one standard deviation
from one another. The loss of precision for small times is most
likely caused by the inaccuracy involved with the manual ro-
tation.

In conclusion we have presented experimental and numeri-
cal results of a granular flow instability which is significantly
different from its classical hydrodynamic analog. The simu-
lations reproduce the characteristic shape and size of the ex-
perimentally observed structures, and provide patterns inthe
early phase of the process, which is not resolved experimen-
tally. Data-collapse plots of the mean wave number indicates
that the flow and resulting structures are invariant when mea-
sured on a scale proportional to the grain diameter for a range
of diameters that spans from 70 µm to 500 µm.
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