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ABSTRACT 

Heat exchange during laminar flow in an open fracture is 
studied numerically on the basis of the Stokes equation in 
the limit of hydro-thermal lubrication. We study the influence 
of fracture roughness on hydraulic permeability and heat flux 
through the fracture sides when a cold fluid is injected into a 
homogeneous hot host rock. As a first step, the temperature 
rock is supposed to be constant so that we only deal with the 
spatial temperature evolution inside the fluid. We use 
realistic aperture geometry and parameters to illustrate our 
modeling. Then we show a simplified thermal simulation by 
using only little spatial information about the hydraulic flow. 

INTRODUCTION 

The modeling of the fluid transport in low permeable crustal 
rocks is of central importance for many applications 
(Neuman, 2005). Among them is the monitoring of the 
geothermal circulation in the project of Soulz-sous-Forêts, 
France (Bachler et al, 2003), where the heat exchange 
especially occurs through open fractures in granite (Gérard 
et al., 2006).  
Numerous hydro-thermal simulations have already been 
proposed: some analytical solutions are known for simple 
geometry like parallel plates (e.g. Turcotte & Schubert, 
2002), flat circular cylinders (Heuer et al., 1991). It exists as 
well more complex models, for instance: modeling occurring 
through a tridimensional network of fractures organized 
according to geological observations eventually added with 
stochastical fractures (like in Soultz-sous-Forêts, France, 
e.g. Gentier et al., 2006; Rachez et al., 2007 or in 
Rosemanowes, U.K., Kolditz & Clauser, 1998). 
Nevertheless, the geometry of each fracture itself is simple 
and in Kolditz and Clauser, 1998 it is suspected that some 
differences between the heat model and what is observed 
could be due to fracture channeling from roughness and 
network channeling. Channeling of the fluid flow has indeed 
already been experimentally observed (e.g Méheust & 
Schmittbuhl, 2000; Plouraboué et al., 2000) within rough 
fracture. 
Here, we focus on the fracture scale, and the specificity of 
our hydro thermal model is to take into account the different 
scale variations of the fracture morphology. We aim at 
bringing out the main parameters which change the 
hydraulic and thermal behavior and quantifying the results. 
The further idea would be to take into account the roughness 
in network model by simply correcting macroscopic 
parameters. 
We first describe our model of fracture thanks to self-affine  
apertures. Then, using lubrication approximations, we obtain  
bidimensional (2D) pressure and thermal equations when a 
cold fluid is injected through a fracture in a stationary regime. 
The temperature within the surrounding rock is supposed to 

be hot and constant (in time and space), with the fluid 
density being constant. We assume that at a coarse grained 
scale, the one dimensional (1D) basic equation for heat flux 
is identical to the one for parallel plates, but with a suitable 
characteristic thermal length which is different from the one 
computed with the mechanical aperture.  
The numerical hydraulic and thermal results are illustrated 
for a given fracture morphology by trying to use realistic 
parameters (roughly inspired by the one of Soultz-sous-
Forêts). Then we aim at bringing out what hydraulic 
information we need to have an idea of the thermal field. 
Thus we roughly estimate the temperature field by using only 
restricted spatial information about the hydraulic field (here 
obtained thanks to spatial Fourier filtering). 

MODELING 

Roughness of the fracture aperture 
It has been shown that a possible geometrical model of 
rough fractures consists in using self affine surfaces, 
statistically invariant upon an isotropic scaling within their 
mean plane while on the perpendicular direction, the scaling 
is anisotropic (e.g. Brown & Scholz, 1985, Power et al., 
1987; Cox & Wang, 1993; Schmittbuhl et al, 1993; 
Schmittbuhl et al 1995). To simplify the notation, we consider 
that the mean fracture plane (Figure 1) is described by the 
( )ẑ,x̂  coordinates and perpendicular direction is ŷ . Such a 
self affine surface is invariant under the scaling 
transformation x→ λx, z→ λz and y→λζ y, where ζ is called the 
roughness exponent or Hurst exponent. Many rock surfaces 
exhibit a Hurst exponent equal to ζ =0.8 (granite, etc) 
(Bouchaud, 1997, Schmittbuhl et al, 1993, Schmittbuhl et al, 
1995; Santucci et al., 2007) or to ζ =0.5 (sandstone) (Boffa et 
al., 1998; Méheust, 2002). 
It is important to note that a self-affine surface having a 
roughness exponent inferior to 1 is asymptotically flat at 
large scales (Roux et al., 1993). Accordingly, the self-affine 
topography can be seen as a perturbation of a flat interface. 
Due to the lubrication approximation (Pinkus & Sternlich, 
1961), which holds with smooth enough self affine 
perturbations, we will see that only the local aperture 
controls the problem. Therefore, the only input is the 
aperture field (also called geometrical aperture). The 
difference between two uncorrelated self-affine fracture 
sides having the same roughness exponent is as well a self-
affine function (Méheust & Schmittbuhl, 2003). Thus we 
generate numerical apertures  by using self-affine functions. 
Several independent self-affine aperture morphologies are 
generated with the same roughness exponent chosen equal 
to ζ = 0.8. They exhibit various pattern morphologies, various 
root-mean square deviations (RMS, denoted as σ), mean 
geometrical apertures A and size (length lx and height lz). 
The local aperture can be expressed as a(x,z) = A + σ.a’(x,z), 
where A is the spatial average of a, 
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( ) ( ) 22 Alldxdza zx −⋅= ∫∫σ  and a’ is a self-affine 
perturbation having ζ as exponent, with a spatial average 
being null and a RMS equal to one. To keep simple 
boundary geometry of the domain where the equations are 
solved (i.e. where the aperture is not null), we do not allow 
any contact area by probing a range of strictly positive 
normalized aperture fields.  
It has to be noticed that our hydro-thermal model can be 
applied to other variable aperture which might be more 
relevant depending on the geological context.  

 
Figure 1: Schematic fracture with variable aperture a(x,z); 
ρ, c, χ, η are respectively the following fluid properties: 
density, heat capacity, thermal diffusivity and dynamic 
viscosity. 

Hydraulic flow 
The hydraulic flow is obtained under the same hypotheses 
and solved in the same way as in Méheust & Schmittbuhl, 
2001: we use finite differences, and the system of linear 
equations is inverted using an iterative biconjugate gradient 
method (Press et al., 1992). 
We impose the pressure drop across the system, and study 
the steady state flow of a Newtonian fluid at low Reynolds 
number, so that the viscous term of the Navier-Stokes 
dominates the inertial one (Stokes, 1856; Batchelor, 1967): 

vP Δ=∇ η , where η is the dynamic viscosity, v  the 
velocity of the fluid and P is the pressure deviation from the 
hydrostatic profile (or the hydraulic head, equal to the 
pressure corrected by the gravity effect). To be in the 
framework of the lubrication approximation (Pinkus & 
Sternlich, 1961), besides small Reynolds number, we 
consider fractures with flat enough sides. Therefore, the 
velocity vectors get negligible components normal to the 
mean fracture. We consider that a macroscopic forced 

pressure gradient imposed along the x̂  axis; ŷ  is denoted 

as the axis perpendicular to the mean fracture plane, and ẑ  
is the in plane unit vector perpendicular to the mean flow 
direction. This leads us to express the velocity as a parabolic 
law (e.g. Iwai, 1976) (Figure 2):  

)yy)(yy(P)y,x(v 21
2

2
−−

∇
=

η
 [Eq. 1], 

where y1 and y2 are the fracture sides coordinates and 2∇  
is the gradient operator in the fracture plane. The hydraulic 
flow through the fracture aperture is (cubic law): 

Pady)z,y,x(v)z,x(q
a

2

3

12
∇−== ∫ η  [Eq. 2 ], 

and the bidimensional (2D) velocity is defined from the 
average of the velocity over the aperture with 

Pa)z,x(u 2

2

12
∇−=

η
 [Eq 3]. 

 Furthermore, considering the fluid to be incompressible, the 

Reynolds equation is obtained: 02
3

2 =∇∇ )Pa( . As 
boundary conditions of this equation, we impose the 

pressure at the inlet and outlet of the fracture (if x = 0, P = P0 
and if x = lx, P = PL, with P0 > PL) and consider impermeable 
sides at z = 0 and z = lz. 
 

 
Figure 2: Velocity quadratic profile (dashed line) and 
temperature quartic profile (dot-dashed line) inside a 
fracture along the aperture; arbitrary abscissa units. Along 
the fracture sides, v=0 and T=Tr, and the roots of the 
polynoms given by equations 1 and 4  are respected. 

Thermal exchange 
On the basis of a classical description (e.g. Turcotte & 
Schubert, 2002), we aim at modeling the fluid temperature 
when cold water is permanently injected at the inlet of the 
hot fracture at temperature T0. As the conduction inside the 
rock is not taken into account (hypothesis of infinity thermal 
conduction inside the bedrock), the fracture sides are 
supposed to be permanently hot at the fixed temperature Tr. 
This hypothesis should hold for moderate time scales (e.g., 
months), after the fluid injection has stabilized, and before 
the rock temperature has significantly changed. The fluid 
temperature is controlled by the balance between thermal 
convection and conduction inside the fluid, which reads 

(Landau & Lifchitz, 1994): TTv Δ=∇⋅ χ  where χ is the 
thermal diffusivity of the fluid and T the fluid temperature. We 
extend the lubrication approximation by considering that the 
slopes of the fracture morphology are small enough to 
provide conduction oriented along y axis. We suppose that 
the leading terms are conduction along y axis and in plane 

convection (no velocity component along ŷ ); the vertical 
free convection (order of magnitude is km/year from Bataillé 
et al, 2006) as well as the fluid conduction along x̂  and ẑ  
axes are neglected, so that the previous equation is reduced 
to : 

z
Tv

x
Tv

y
T zx

∂
∂

+
∂
∂

=
∂
∂

χχ2

2

[Eq. 4]. 

The fluid temperature is supposed to be the one of the rock 
along the fracture sides, and the fluid is supposed to reach 
the temperature rock at a long enough distance. When we 
integrate this quantity along the fracture aperture we assume 

that z
Tq

x
Tq zx ∂

∂
+

∂
∂

=β  is mainly dependent on (x,z) 

(few dependence on z if we are away from the fracture 

sides), where qx and qz are the x and z component of q  
defined in Eq. 2. In this way, we find that the temperature 
solution has a quartic profile (Figure 2) along the fracture 
aperture 1: 

rT)yy)(yy)(yy)(yy(
a

T +−−−−−= 21213 55
2 χ
β

 [Eq.5], 

 where y1 and y2 are the fracture sides coordinates. 

                                                                  
1  We develop as well another kind of algorithm 
based on Lattice Boltzmann method, which requires very few 
hypotheses, in order to solve the velocity and temperature 
fields. From those results it appears that the respective 
parabolic and quartic solutions (with the proper coefficients) 
are indeed right more or less 5%. 

.y x
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Similarly to what we do for the hydraulic flow, we solve the 
thermal equation by integrating it along the fracture aperture 
(consequence of the lubrication approximation extended for 
the thermal aspect). In particularly, when doing the balance 
of the energy flux, we express the advected free energy flux 

as 
[ ] ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−∇ ∫

a

dyT)z,y,x(T)z,y,x(vc 02 ρ . Consistently with 

this energy budget, we introduce the relevant quantity T  
which is an average temperature weighted by the velocity: 

∫

∫
=

a

a

dy)z,y,x(v

dy)z,y,x(T)z,y,x(v
)z,x(T  [Eq. 6]. 

We also use the Nusselt number refrNu ϕϕ−=  which 
compares the efficiency of the present heat flow at the 

fracture side 
21 z,zy

r y
Tc

=∂
∂

−= χρϕ  and the mesoscopic flow 

at the fracture aperture scale without convection: 

( ) aTTc rref −= χρϕ . Using the polynomial expression 

of T (Eq. 5) and T  definition, we get 17
70

=Nu . Rearranging 

the simplified equation of thermal convection and conduction 
balance (Eq. 4), we get the final equation to be solved: 

( ) 022 =−+∇⋅ rTTNu
a

Tq χ
 [Eq. 7], 

with boundary conditions 00 T)z,(T =  at the inlet and 

r
x T)z(T ⎯⎯→⎯ ∞→  at the outlet. Moreover any boundary 

condition can be used along z=0 or z=lz, as the hydraulic flow 
is null there. 
We discretize this equation by using a first order finite 
differences scheme and finally get T  by inversing the 
system using a conjugated gradient method (Press et al., 
1992). 

Characterization of the computed hydraulic and thermal 
fields 
Comparison to modeling without roughness 
If we consider a fracture modeled with two parallel plates 
separated by a constant aperture A, then the gradient of 
pressure is constant all along the fracture as well as the 
hydraulic flow which is equal to: 

x̂A
l
Pq
x

// η12

3Δ
−= , where the subscript // denotes results 

valid for parallel plates and ΔP = PL - P0. Under these 
conditions the analytical solution of Eq. 7 for parallel plates 
is: 

r
//

r// T
R
xexp)TT(T +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= 0  [Eq. 8], 

where R// is a thermal length describing the distance at which  
the fluid reaches  the temperature of the surrounding rock. It 
is defined by: 

Nu
APe

Nu
A

l
P

Nu

qA
R

x

//

// =
Δ

−==
χηχ 242

4

 [Eq. 9], 

where Pe is the Peclet number defined by  χ2//qPe = . 
Pe expresses the convection importance compared to the 
conduction. For rough fractures, we want to study whether 
the temperature profiles can still be described by             

Eqs. 7 and 8 at a coarse grained case. If this is the case 
within some approximation, the goal of our study becomes to 
understand how the roughness affects the thermalization, 
and more precisely to quantify the suitable thermalization 
length R: when the modeled temperature profile is fitted by 
an exponential profile similar to Eq. 8, we obtain a suitable 
thermal length R that depends on the fracture morphology. 
 
Hydraulic aperture 
The hydraulic flow can be macroscopically quantified with 
the hydraulic aperture H (Brown, 1987; Zimmerman, 1991), 
defined as the equivalent parallel plate aperture to get the 

macroscopic flow xq  under the pressure gradient x
lPΔ : 

3
1

12
P
lqH x

x Δ
−=

η
 [Eq. 10], 

where the quantity under bracket like xq  is the spatial 
average of what is inside the brackets. On the field this H 
value is probably a quantity which can be determined by 
hydraulic tests while A is the value we get an idea of using 
optical or geometrical measurements. If H/A is higher than 1, 
then the fracture is more permeable than parallel plates 
separated by a(x, y) = A. As the hydraulic aperture can be 
inhomogeneous, we define as well a local hydraulic aperture 
with: 

3
1

12
⎟
⎠
⎞

⎜
⎝
⎛

Δ
−=

P
l)z,x(q)z,x(h x

x
η

 [Eq. 11]. 

 
Local quantities (geometrical and hydraulic apertures) are 
denoted with small letters and macroscopic variables (mean 
geometrical and hydraulic aperture) are in capital letters. 
 
Thermal length 

For the thermal aspect, once T  is known, we aim at defining 
a thermal length R. To do that, we first define T , a 1D 
temperature which varies in the forced gradient direction, 
fulfilling the energy conservation: 

∫

∫
=

a
x

a
x

dz)z,x(u

dz)z,x(T)z,x(u
)x(T  [Eq. 12]. 

It is the average of T  along the width of the fracture lz, 

weighted by xu  which is the x component of the                
2D velocity (defined in Eq. 3). 
 
Then, based on the flat plate temperature solution (Eq. 8), 

we do a linear regression of ( ) ( )[ ]rr TTTTln −− 0  plotted as 
a function of x, and we use the slope of this model line to get 
the characteristic thermal length R. The regression is 
computed with least square minimization for abscissa from 

x= 0 to the minimum x value so that 
6

0

102 −⋅<
−
−

r

r

TT
TT

. 

This thermal length can be linked to a “thermal aperture” Γ 
by using a similar definition to the one given in Eq. 9 : 

χηNul
PR
x 24

4ΓΔ
−=  

 
It means that parallel plates separated by the proper 
aperture Γ  will provide the same averaged thermal behavior 
as the rough plates. 
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APPLICATION 

Example of computed hydro-thermal fields 
Let us consider the wells GPK3 and GPK2 near           
Soultz-sous-Forêts, which are separated by a distance of 
about 600m at about 5000 m of depth. From hydraulic tests 
(Sanjuan et al., 2006), it has been shown that the hydraulic 
connection is relatively direct between both wells: (Sausse et 
al., 2008) a fault zone consisting on clusters of small 
fractures would link GPK3 (interception at 4775m) and 
GPK2. That probably leads to complex hydraulic streamlines 
and heat exchanges. We study a simplified case with one 
single fracture and roughly straight streamlines between 
both wells (linear flow). Then we use parameters 
(geometrical aperture and pressure gradient) which are 
probably slightly different from the ones observed or used in 
practice at Soultz-sous-Forêts. 
Figure 3 shows an example of self-affine aperture, randomly 
generated and dimensioned so that the mean aperture A is 
equal to 3.60 mm and its standard deviation is   σ =1.23 mm. 

 
Figure 3 Aperture field with mean aperture A=3.60 mm 
and variability of the aperture σ=1.23 mm (σ/A=0.34). The 
color bar represents the aperture in m, the side units are 
plane spatial coordinates (x,z), also in m. 
 
Then we solve the hydraulic flow in this variable morphology 
and obtain the 2D velocity field u (Figure 4 shows norm of u, 
defined in Eq.3) by dimensioning it with ΔP/lx=-10-2bar/m, 
which corresponds to about 6 bars between the bottom of 
both wells. The dynamic viscosity is chosen equal to 4x10-4 
Pa/s (reference value for pure water at 10 Pa and 100°C from 
table in Spurk & Aksel, 2008). The size of the studied 
fracture is lx x ly=683.3x1366.5 and using the parallel plate 
model separated by A, the 2D-velocity expected from the 
quadratic law is 3.6 m/s and the thermal length is R// =33.3m. 
As we see, the 2D velocity field exhibits quite high contrasts: 
the fluid is rather immobile at the upper and lower borders of 
the fracture (close to z=0 and z=lx) while most of the fluid 
flows very quickly through a channel in the middle of the 
fracture. 
The macroscopic hydraulic aperture is 3.73 mm, which is 
slightly higher than the mean mechanical aperture A. 
Therefore, this whole fracture is more permeable than 
parallel plates separated by A. That means as well that this 
fracture is mechanically thinner than what we would expect 
from the knowledge of H. However, if the measurement of 

the hydraulic aperture is local (see in Figure 5), then h 
ranges from nearly 0 to 5.43 mm. 
 
 

 
 

Figure 4: Color map of the velocity field in m/s. Red areas 
correspond to very high velocity while dark blue areas 
show static fluid. A linear pressure gradient is imposed 
between the left and right of the fracture. Spatial 
coordinates are in m.  
 
It has to be noticed that many individual fracture apertures 
observed in Soultz are rather thinner (0.2 mm) (Genter & 
Jung, private communication) while the fracture zone is 
rather thicker (10cm) (Sausse et al., 2008) and that the 
pressure gradient is probably higher than what is applied 
here – however the friction along the well itself may 
diminishes the pressure difference applied at the well head–. 
In our simulation, we have to work with small enough 
velocities (moderate Reynolds number) and we need to fix 
the pre-supposed macroscopic ratio between convection and 
conduction (thermal Peclet number). We quantify it indirectly 
thanks to the ratio lx/R//. R//, defined in Eq. 9, is the 
characteristic thermal length depending on the average 
aperture, pressure gradient and fluid parameters which can 
be computed without knowing the exact morphology. All the 
results we present are still valid under any dimensioning 
which keeps lx / R// constant (here equal to 20.5): for instance 
another dimensioning for other purpose could be lx=691m, 
A=10mm and ΔP/lx=-1.7x10-4bar/m (using the same fluid 
parameters). 
The wells does not inject/pump water all along the fracture 
height (straight streamlines are only an approximation) and 
the fracture zone between GPK2 and GPK3 is not vertical. 
The flowrate observed at Soultz is about Q=20L/s, which is 
probably carried by several fractures. Thus, using a velocity 
of about u=5m/s and a fracture aperture equal to 5mm means 
that the well crosses such fractures over a cumulated length 
of about (by neglecting the well radius): 

cm
VA
QL 80

1055
1020

3

3

≈
××
×

== −

−

. 
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Figure 5: Color map of the local hydraulic aperture in m 
computed from the variable hydraulic flow and aperture. 
Spatial coordinates are in m. 
 
 

 
Figure 6: Map of the averaged temperature field T  in 
Celsius degrees (°C). The color bar changes exponentially; 
thus small variations slightly below the temperature rock 
(200°C) are highly visible. Spatial coordinates are in m. 
 
Figure 6 shows the temperature field T  computed inside the 
variable aperture using the variable hydraulic flow. As we 
see, T  is very inhomogeneous and exhibits channeling. 
The chosen inlet temperature is T0=60°C, the rock 
temperature is Tr=200°C and the fluid diffusivity is 
χ=0.17mm2/s (water reference value at T=100°, from table in 
Taine & al., 2003). In practice, the rock temperature will 
evolve because the rock thermal diffusivity is about 1mm2/s, 

while we considerer it as far larger compared to the fluid one 
(so that Tr is kept constant). Using these parameters we see 
that the pumping well located at 600m within the illustrated 
fracture geometry is far enough to get hot water. 
However, T  is rather different from what we expect from 
parallel plates, especially because this field is not at all 
invariant along ẑ . That is quantitatively well illustrated in 
Figure 7 where we plot some profiles of temperature along x 
for z=970m (plot iv) and z=703m (plot v). For example, at 
x=200m, the fluid is 200°C hot in z=970m, while in z=703m the 
temperature is only 183°C. Let us compare these 1D 
temperature profiles along x to the one obtained inside 
parallel plates separated by the aperture A which reads: 

r
//

r// T
R
xexp)TT(T +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= 0  [Eq. 13]. 

 
 Following this model (plot iii) the fluid should be as well at 
200°C in x=200m. If we compare //T  to the averaged 

observed temperature T  (defined in Eq. 12) (Figure 7,     

plot i), we see that //T  is not well representative. Therefore, 

we model T  by using an adapted parallel law modT  (plot ii) 
which is an exponential law with a suitable thermal length R:  

rrmod T
R

xxexp)TT(T +⎟
⎠
⎞

⎜
⎝
⎛ −
−−= 0

0  [Eq. 14], 

where R=96.6m (i.e. 2.9xR//) and x0=9.8m. Due to the choice 
of the minimization to obtain parameters R and x0 (least 
square applied on the semi-log plot), the beginning of the fit 
curve is not accurate. The thermal aperture is therefore 
equal to Γ=4.7 mm, which is rather different from the 
geometrical aperture A=3.6 mm. A larger thermal aperture 
(compared to the geometrical one) means an inhibited 
thermalization on average. 
 

 
Figure 7 Fluid 1D temperature in °C in function of x. The 
continuous black curve (i) shows the computed temperature 
T . The blue dashed curve (ii) is the model of curve (i) with 
an exponential function. The dot dashed magenta curve (iii) 
is the fluid 1D temperature by neglecting the self-affinity 
perturbation (inside flat parallel plates). The curves (iv) 
and (v) are profiles of temperature )z,x(T  for respectively 
z=970m and z=703m. 

Temperature estimation with few parameters 
The spatial correlation of the hydraulic aperture seems to be 
a key parameter to evaluate the temperature field. The 
macroscopic hydraulic aperture H brings too few information 
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to characterize the heat exchange, while it is quite useless to 
know in detail the spatially variable hydraulic aperture h 
(which is by the way impossible on the field). Therefore we 
propose to characterize the hydraulic aperture with only the 
largest spatial variations. Numerically, it is possible to obtain 
them by filtering the hydraulic field in Fourier domain with the 
following criterion: only the Fourier coefficients so that  

2
22

2
22

<⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

z
z

x
x lklk

ππ
 are kept, where kx and ky are 

the coordinates of the wave number. Considering that the 
Fourier transform is discrete, it means that only the average 
and the first Fourier modes along x and z are left. The 
hydraulic aperture field displayed in Figure 5 is therefore 

reduced to the field ( )z,xh f  shown in Figure 8 (with the 
same color scale). As wee see, the middle channel remains, 
while high frequency variations are removed.  

 
Figure 8: Map of the simplified hydraulic aperture hf in m. 
Here, it is obtained by Filtering the previous hydraulic 
aperture: average and 1st Fourier modes along x and y are 
left. The spatial coordinates are in m. 
 
Such low frequency variations might be obtained with field 
measurement. Let us assume that we only have this data to 
evaluate the heat exchange. 
A quick and simple approximation of the thermal field is to 
use the exponential law with a local variable length of 
reference Rf (x,y)  which change accordingly to the local 

hydraulic aperture ( )z,xh f . Rf (x,y  is defined similarly to 

R// in Eq. 4 by putting ( )z,xh f  in place of A: 

r
f

rf T
)y,x(R

xexp)TT()y,x(T +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−= 0  [Eq. 15] 

where   
[ ]

χηNu
)y,x(h

l
P)y,x(R f

x
f 24

4
Δ

−= [eq. 16]. 

 
From this last expression, we obtain the thermal field shown 
in Figure 9. The main spatial channel of the complete 
thermal field (Figure 6) is still visible, and even if the fluid 

temperature evolves slightly differently (quicker), it may 
roughly give an idea of what thermically happens.  
 

 

Figure 9: Map of the simplified temperature field fT  
obtained using the previous filtered aperture (fig. 8) in the 
exponential law. Color scale is in °C and it changes 
exponentially. 

CONCLUSION AND COMPLEMENT 

We propose a numerical model to estimate the heat 
exchange at the fracture scale between cold fluid and hot 
surrounding rock. We supposed to be in permanent laminar 
regime and the numerical model is based on a lubrication 
approximation for the fluid flow (Reynolds equation). We 
introduce a “thermal lubrication” approximation which leads 
us to a quartic profile of the temperature across the aperture. 
It is obtained by assuming that in plane convection is 
dominant compared to in plane conduction (low in plane 
Peclet number). Moreover, due to the lubrication 
approximation, the out plane convection is neglected and the 
heat conduction initiated by the difference of temperature 
between rock and fluid is supposed to be the major out plane 
phenomenon. 
Our model shows that the roughness of the fracture can be 
responsible for fluid channeling inside one single fracture. In 
this zone of high convection the heat exchange is inhibited: 
the fluid needs a longer distance to reach the rock 
temperature. Besides, the temperature evolution is 
inhomogeneous along the fracture height. We characterize it 
on average thanks to a thermal length and a thermal 
aperture which change according to the morphology. 
In this proceeding, we only illustrate a case of rough 
aperture which leads to inhibited thermalization with a long 
channeling. With other apertures (not illustrated here) we 
observe that roughness may also locally highly reduce the 
convection (because of barriers of rock perpendicular to the 
main flow) which locally enhances the heat exchange (high 
conduction compared to convection). 
In any case, we notice that the temperature distribution is 
strongly affected by the hydraulic flow. 
By characterizing the hydraulic and thermal exchange with 
reduced parameters, we see that average value of the 
geometrical aperture provide too little information to 
characterize the fluid temperature. In contrast, the 
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knowledge of the main spatial variation of the hydraulic 
aperture (here observed by keeping only the very low spatial 
frequencies using Fourier filtering) brings interesting 
information about the spatial thermal field. 
Moreover knowing the real distance covered by fluid 
particles may improve the temperature estimation. Indeed, it 
seems that the thermal field evolves exponentially along the 
trajectory lines. That brings back to the notion of tortuosity of 
the flow inside the fracture. 
If the main variations of the geometrical field are known, it is 
also possible to compute the hydro-thermal fields in the 
same way as we have explained in the “Modeling” part. The 
main spatial hydro-thermal features can be obtained using 
apertures fields presenting various features (self affine or 
not). The macroscopic spatial correlation of the aperture is 
probably an important parameter ruling the hydro-thermal 
behavior. 
 
We thank Albert Genter, Reinhard Jung Marion, Patrick 
Nami and Marion Schindler for discussion about this 
modeling. 
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