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R. Toussaint, IPGS, CNRS UMR7516, 5 rue René Descartes, 67084 Strasbourg Cedex, France.

(renaud.toussaint@eost.u-strasbg.fr)

1Department of Environmental Sciences

D R A F T February 14, 2010, 7:37pm D R A F T



X - 2 GOREN ET AL.: MECHANICS OF FLUID-FILLED GRANULAR MATERIAL

Abstract. Deformation of fluid-filled granular media occurs in many geo-4

physical systems ranging from shear on geological faults to landslides and5

soil liquefaction. Its great complexity is rooted in the mechanical coupling6

between two deforming phases: the solid granular network and the fluid-filled7

pore network. Often deformation of the granular network leads to pore fluid8

pressure (PP) changes. If the PP rises enough, the fluid-filled granular me-9

dia may transition from a stress-supporting grain network to a flowing grain-10

fluid slurry, with an accompanying catastrophic loss of shear strength. De-11

spite its great importance, the mechanisms and parameters controlling PP12

evolution by granular shear are not well understood. A formulation describ-13
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5EOST, Université de Strasbourg,

Strasbourg Cedex, France.

D R A F T February 14, 2010, 7:37pm D R A F T



GOREN ET AL.: MECHANICS OF FLUID-FILLED GRANULAR MATERIAL X - 3

ing the general physics of pore fluid response to granular media deformation14

is developed, and used to study simple scenarios that lead to PP changes.15

We focus on the infinitely stiff end-member scenario, where granular defor-16

mation is prescribed, and the PP responds to this deformation. This end-17

member scenario illustrates the two possible modes of pore fluid pressuriza-18

tion: 1. via rapid fluid flow when fluid drainage is good, and 2. via pore vol-19

ume compaction when drainage is poor. In the former case the rate of gran-20

ular deformation controls PP evolution, while in the latter case fluid com-21

pressibility is found to be an important parameter and the amount of pres-22

surization is controlled by the overall compaction. The study also predicts23

that shearing of over-compacted granular media may lead to significant pres-24

surization as long as some drainage exists and a compaction phase follows25

dilation.26
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1. Introduction

Soils, unconsolidated rocks, and fault gouge may be described as porous skeletons com-27

posed of contacting grains. Often the pores are filled with fluid. The grains and the fluid28

form two intertwined networks: the grains connect via frictional contacts forming a het-29

erogeneous deformable solid network, while the fluid flows in the complementary network30

of pores. The coupled solid-fluid system may deform in response to applied stresses, and31

deformation naturally arises on all time scales: from slow compaction in response to sed-32

iment load, to catastrophic failure during earthquakes and landslides. The granular net-33

work may deform elastically or through irreversible rearrangements (e.g. pore collapse).34

Such deformation changes the pore volume and by that affects the pore fluid pressure35

(PP). On the other hand, gradients in PP exert forces that may cause grains to move and36

the solid network to deform. The coupling between the solid matrix deformation and the37

value of PP is possibly the most important aspect of solid-fluid coupling: elevated PP38

modifies the way in which saturated granular soils and rocks respond to stresses, and of-39

ten controls devastating natural phenomena such as earthquakes [e.g. Sleep and Blanpied ,40

1992], landslides [e.g. Voight and Faust , 1982] and soil liquefaction [Das , 1993; Kramer ,41

1996]. A continuum view of how PP modifies the system response to stress is formulated42

in the law of effective stress [Terzaghi , 1943]. The most important aspect of this law is43

the fact that the shear resistance, τ , of saturated granular material decreases linearly with44

increasing PP, P , since τ ∝ σ−P , where σ is the confining stress [Terzaghi , 1943; Scholz ,45

1990]. Therefore, the ability of saturated soils to resist shear is crucially dependent on46

the state of their PP: under normal conditions, when P < σ, grain-networks behave like47
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solids that can sustain shear stresses. However, if for some reason the PP is elevated to48

a level where P = σ the shear resistance vanishes, liquefaction occurs and the grain-fluid49

system flows like a fluid in response to even small shear stresses. When PP within a50

landslide shear zone approaches the confining stress, the slide may accelerate catastroph-51

ically. When fault gouge material experience high values of PP, the dramatic reduction52

of shear resistance may lead to dynamic acceleration and an earthquake in response to53

background tectonic stresses that were previously sustained by the fault resistance to slid-54

ing. In soils, an increase in PP leading to liquefaction may cause collapse of previously55

supported infrastructure.56

Traditionally, the mechanics of fluid-filled soils, landslides’ shear zone and gouge mate-57

rial are studied separately. Indeed, a major difference between these three systems is their58

characteristic depth. While soil liquefaction is a phenomenon of the very shallow crust59

and is usually restricted to few tens of meters below the surface, the depth of landslides’60

shear zones ranges between several meters to few kilometers [e.g. Sidle and Ochiai , 2006],61

and the depth of fault gouge is restricted to the seismogenic zone, normally 2-30 km. The62

different depths result in differences in the effective confining stresses. This range of depth63

is also accompanied by a range of drainage conditions.64

Despite depth and drainage differences, the basic coupled mechanics of grains and fluid65

may be applied similarly to soils, shear zones, and gouge layers. Indeed, the mathematical66

formulation that is developed here from first principles to describe PP response to gran-67

ular matrix deformation is depth independent. For that reason, similar studies that are68

reviewed in Appendix A and deal with pore fluid pressurization for one system, may be69

applied also to the other systems. Therefore the term ’liquefaction’ is used here to address70
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the general case of PP equals the confining stress, regardless of the geological setting (soil,71

landslides’ shear zone and gouge layers). Caution should be practiced when interpreting72

the results, as the PP required to liquefy soils is smaller by orders of magnitude than that73

required to completely liquefy gouge layers. In the rest of the introduction, the importance74

of PP to soil liquefaction and pressurization along gouge layers is reviewed separately, but75

the mechanics controlling PP evolution is presented and discussed uniformly.76

Soil liquefaction [Das , 1993; Kramer , 1996] is triggered by and contributes to the devas-77

tation of earthquakes, and may cause collapse of infrastructure foundations, and initiate78

landslides. In the process of liquefaction, external cyclic loading leading to PP rise and79

the consequent reduction of shear resistance causes the granular system, which under80

normal conditions behaves like a solid that resists shear, to flow as a fluid. As a result,81

liquefied soil can no longer support the infrastructure that is rooted in it and a catas-82

trophic collapse of buildings, roads, bridges and other structures with foundations may83

take place (e.g., damage during earthquakes at Niigata, 1964, [Kawakami and Asada,84

1966], or Izmit, 1999, [Cetin et al., 2004]). In some earthquakes, the damage caused by85

liquefaction exceeds the damage by direct ground acceleration. For example, the 199586

earthquake in Kobe, Japan, caused liquefaction that resulted in more than 5500 deaths,87

and an estimated economic loss of over $US 130 billion [Scawthorn and Yanev , 1995].88

Since liquefaction models are a practical necessity in geotechnical engineering, phe-89

nomenological models of coupled solid-fluid deformation have been developed (For review90

see [Sawicki and Mierczynski , 2006]). These models are usually based on continuum mix-91

ture theory formulations, and use experimental data for model calibration. A major effort92

to determine the mechanisms involved in earthquake-induced soil liquefaction by compar-93
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ing centrifuge experiment with phenomenological numerical models took place as part of94

the VELACS project [Popescu and Prevost , 1995]. None of the models accurately predict95

the set of experimental outcomes and by themselves show a wide and inconsistent range of96

predictions [Manzari et al., 1994]. Recently, more sophisticated phenomenological models97

have improved the predictability of PP buildup and dissipation [Zienkiewicz et al., 1999].98

Catastrophic pore fluid pressurization may occur not only in response to cyclic loading99

induced by earthquakes, but also as a result of continuous shearing of fluid-filled granular100

layers. This is the most studied scenario for liquefaction along landslides’ shear zone and101

fault gouge. In these cases, drainage conditions and porosity evolution were shown to102

control PP evolution and thus layer strength. Dynamic dilation and compaction of gouge103

and shear zone material are shown to be a function of shearing velocity [Marone et al.,104

1990] and stress conditions [Iverson et al., 2000; Aharonov and Sparks , 2002]. Dilation105

often leads to stable sliding as it causes PP reduction and fault hardening [Scholz , 1990;106

Segall and Rice, 1995; Moore and Iverson, 2002], while shear-enhanced compaction of107

under-compacted gouge may lead to extreme weakening and unstable sliding when the108

fault is sealed [Blanpied et al., 1992]. Pore fluid pressurization and migration also control109

communication between fault zones and earthquakes sequencing [Yamashita, 1999; Miller110

and Nur , 2000].111

In terms of the physics of the granular-fluid system, a matrix of granular media may112

deform elastically through small reversible deformation at grain contacts, and/or plasti-113

cally through irreversible rearrangements (e.g. pore collapse). The term poroplasticity114

[Kherbouche et al., 1995] is used here to describe such irreversible deformation of granular115

matrix in a way that modifies the shape and size of pores and the contact network between116
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grains, and is unrelated to microscopic dislocation glide. I.e. rearrangement takes place117

in the scale of an elementary grain. The traditional approach suggests that poroplasticity118

leads to fluid pressurization and causes liquefaction. More recently a poroelastic process119

was suggested to cause liquefaction in earthquakes [Bachrach et al., 2001]. Sections 1.1120

and 1.2 shortly review these approaches and demonstrate that a physical understanding121

of the mechanism by which matrix deformation generates large enough PP for soils and122

gouge layers to liquefy is not complete. The rheological regime that controls PP evolu-123

tion, poroplasticity or poroelasticity, is still debated and so are the relevant boundary124

conditions (drained and undrained), and the importance of physical parameters such as125

fluid compressibility.126

1.1. Poroplastic Approach

The poroplastic view of liquefaction relates the generation of high PP to irreversible127

collapse of pore volume under undrained conditions [Sawicki and Mierczynski , 2006]. This128

mechanism is supported by laboratory experiments showing that when loose sediments129

compact under cyclic shear [Casagrande, 1936; Youd , 1972], PP rises under undrained130

conditions [Castro, 1969]. Many models of poroplastic deformation assume specific de-131

formation laws: in the context of soil liquefaction with deformation induced by tapping132

[Snieder and van der Beukel , 2004], in relation to crustal processes with material precip-133

itation along pores [Walder and Nur , 1984], and in the context of gouge material with134

porosity that depends on slip [Yamashita, 1999] and slip velocity [Segall and Rice, 1995;135

Samuelson et al., 2009].136

Recently, fully coupled grain-scale models of grains and pore fluid where developed to137

study the relation between general deformation of granular matrix and soil liquefaction138
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[e.g. El Shamy and Zeghal , 2007; Okada and Ochiai , 2007; Li et al., 2007]. Such models139

use discrete element method and are capable of simulating also irreversible grain rear-140

rangement. Here we review two of these studies that exemplify the inconsistency in the141

assumed physics of soil liquefaction. (1) El Shamy and Zeghal [2007] study a drained142

system (where the fluid is allowed to flow freely out of the top boundary) with forcing143

induced by cyclic shear acceleration at the base of the system, and assume that pore144

fluid is completely incompressible, an assumption that follows many engineering interpre-145

tation of experiments [e.g. Garga and Zhang , 1997; Kozlov et al., 1998]. (2) Okada and146

Ochiai [2007] study an undrained system (with impermeable boundaries) under forcing147

of contractive normal deformation, and assume a compressible pore fluid. Both studies148

report the generation of high enough PP for liquefaction to occur, while the latter study149

emphasis that high PP was generated only in initially loosely packed systems. Thus,150

these two works study the same problem but assume different physics (incompressible151

vs. compressible fluid) and different boundary conditions (drained vs. undrained). The152

results of Okada and Ochiai [2007] can be interpreted within the classical framework of153

soil liquefaction, as they observe high PP when compacting a loosely packed undrained154

granular system. However, the results of El Shamy and Zeghal [2007] are somewhat un-155

expected because they observe liquefaction under drained conditions with incompressible156

fluid. Indeed, a similar model that is described in Itasca [2005] stresses that liquefaction157

cannot be simulated with an incompressible fluid because then the model ”does not in-158

clude a mechanism for generation of pore pressure under strain”. In section 5 we supply159

a physical explanation for this apparent violation of the classical view of liquefaction, and160
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show that the two models of El Shamy and Zeghal [2007] and Okada and Ochiai [2007]161

represent different end-members of the same physical system.162

1.2. Poroelastic Approach

Poroelastic theory for coupled solid-fluid deformation [Terzaghi , 1943; Biot ,163

1941, 1956a, b, 1962; Skempton, 1960; Wang , 2000] assumes infinitely small reversible164

deformations, (an assumption better suited for rocks and cohesive matter than for gran-165

ular media) and calculates solid deformation and PP. The poroelastic view attributes PP166

rise to the coupling between the elastic deformation of pores and the porous flow induced167

by the passage of P-waves [Bachrach et al., 2001]. A Biot based model is developed in168

Bachrach et al. [2001], which shows that compressible fluid and low shear modulus of169

the granular matrix may lead to PP that exceeds the loading. A similar formulation but170

without inertial terms is presented in Wang [2000] for the general study of PP response to171

cyclic loading from a poroelastic point of view. It will be shown in section 3 that PP rise172

using this mechanism may lead to soil liquefaction only in the very top of the sediment173

column, and to gouge liquefaction only if the fluid was initially highly pressurized.174

1.3. Overview

The diversity of models and approaches and the ongoing debates regarding the basic175

physics of liquefaction indicate that a coherent physical theory that explains how PP176

evolves in response to general deformation of the granular matrix is still missing. Such a177

unifying theory should be able to explain as particular cases the various field, experimental178

and numerical observations and the links between existing models. It should also address179

some basic questions that were left unanswered: What is the role of fluid compressibility180
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[Garga and Zhang , 1997]? Can liquefaction take place under drained conditions [Das ,181

1993]? And how does liquefaction occur in initially dense soils [Soga, 1998]?182

The work presented here, aims to do exactly that. In order to achieve this goal, we183

first develop a general theory and then apply it within the scope of the infinite stiffness184

approximation, where the granular deformation is prescribed and the pore fluid responds185

to this deformation, without affecting solid matrix deformation. The study of this simple186

end-member case allows analytical solutions for the mechanics of pore fluid pressurization187

to be derived, compared to the numerical solutions, and highlights the mechanisms that188

may lead to liquefaction.189

In this manuscript we develop a first principles formulation for the general PP response190

to granular matrix deformation in section 2. This formulation is not restricted to a191

particular type of deformation and may be used to study both elastic reversible processes192

and irreversible plastic deformation. Non-dimensional analysis of the equation that lies at193

the heart of the formulation reveals different physical processes that control PP evolution.194

The question of poroelastic vs. poroplastic rheology is discussed in section 3. Then, to195

study pore fluid behavior under the infinite stiffness approximation, section 4 describes196

the application of the formulation to a simple system of uniform grains immersed in fluid197

and subjected to shear loading. This application reveals the possibility of liquefaction198

in initially over-consolidated granular material under drained conditions. Analysis and199

implications are discussed in section 5, and we present our conclusions in section 6. In200

Appendix A we show that our formulation for the pore fluid pressure is a generalization of201

previous models and thus we can uncover the missing links between them. In Appendix202
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B we develop a general analytic solution for the basic equation that describes pore fluid203

pressurization.204

2. Theoretical Model

In this section, first principles are used for the development of an equation describing205

the spatial and temporal evolution of excess pore fluid pressure in response to granular or206

porous matrix deformation. Let Φ be the porosity, t the time, ρs and ρf the mass densities207

of the bulk material of the grains and of the fluid, respectively, and us and uf the grains208

and fluid velocities, respectively. The velocities are considered at a representative scale209

for the Darcy’s law, i.e. they are defined for mesoscopic volumes containing at least a few210

grains. First, mass conservation equations are written for the grains and for the fluid:211

∂[(1− Φ)ρs]

∂t
+∇ · [(1− Φ)ρsus] = 0, (1)212

213

∂[Φρf ]

∂t
+∇ · [Φρfuf ] = 0, (2)214

where ∇· is a divergence operator related to grains/fluid advective processes. The quan-215

tity Φ(uf − us) corresponds to the Darcy velocity [Anghel et al., 2006], i.e.216

Φ(uf − us) = −k

µ
∇P, (3)217

where k is the permeability, µ is the fluid viscosity and P is the excess (over hydrostatic)218

fluid pressure. Equation (3), Darcy’s law, is derived from Stoke’s equation, and is a219

reduced form of the momentum equation under the assumption of negligible fluid inertia.220

The fluid density is given by the fluid state equation:221

ρf = ρ0(1 + βP ), (4)222
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where ρ0 is the fluid density at a reference hydrostatic pressure level, and β is the adiabatic223

fluid compressibility, β = (1/ρf )(∂ρf/∂P ). Using the adiabatic compressibility means224

assuming no significant heat exchange between the overpressured and underpressured225

zones during fast motion. We assume that grain compressibility is negligible relative to226

the fluid compressibility, as expected for natural sand filled with fluid such as water, so227

that ρs can be approximated as constant, and equations (1) to (4) lead to:228

βΦ
∂P

∂t
= ∇ · [(1 + βP )

k

µ
∇P ]− (1 + βP )∇ · us − βΦus · ∇P. (5)229

This approach is based on the same basic principles as the approach used successfully to230

model instabilities in the flow of granular media and fluids [Vinningland et al., 2007a, b;231

Johnsen et al., 2006, 2007, 2008], and hydrofracture [Flekkøy et al., 2002]. The value of232

the excess PP, P , has, for the cases considered, an upper bound set by the difference233

between the lithostatic and hydrostatic stresses, σd = (ρs − ρf )gH, where H is the depth234

at which matrix deformation occurs. Indeed, when P = σd the effective stress vanishes,235

and liquefaction may occur. If P exceeds σd hydrofracturing is expected to take place,236

which is a fast transient state, not considered in this manuscript. For that reason the237

analysis presented here considers the case of:238

βP ≤ βσd ¿ 1. (6)239

Taking fluid compressibility of β = 4.5×10−10 Pa−1 [Garga and Zhang , 1997, and reference240

therein], equation (6) bounds σd ¿ 2.22 GPa and H ¿ 150 km. This restriction on H241

does not limit the analysis since soil liquefaction is a phenomenon of the shallow crust,242

and fault gouge material is restricted by the base of the seismogenic zone. It should be243

noted that here we consider a single fluid with low compressibility, such as water, in the244
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pore space. If the pore space is filled with water/air mixture, the mixture compressibility245

is expected to increase significantly with respect to pure water and equation (6) might not246

hold. This situation is not considered in the present manuscript. Following (6), equation247

(5) is rewritten as248

βΦ
∂P

∂t
= ∇ · [k

µ
∇P ]−∇ · us − βΦus · ∇P. (7)249

The first and fourth term of equation (7) compose together the Lagrangian derivative of250

the PP, the second term describes PP diffusion and the third term may be viewed as the251

forcing.252

To investigate the relative magnitude of the different terms in equation (7), a non-253

dimensional analysis is performed. Let us define the characteristic magnitude of the254

variables in the model: P = P̂ /β, us = ûsu0, k = k̂k0, and t = t̂t0, where the ˆ nota-255

tion denotes non-dimensional variables, and u0, k0, and t0 are the velocity, permeability,256

and time scale factors, respectively. The divergence arising from equations (1) and (2)257

represents grain-scale rearrangements. Therefore, the derivatives in these operators are258

scaled by d−1, a characteristic grain diameter, and ∇· = ∇̂1 · /d. However, the gradient259

operator in equation (3) represents a larger length scale, over which Darcy law applies.260

Therefore the derivatives in this operator are scaled by l−1
k , the PP diffusion length scale,261

and ∇ = ∇̂2/lk. lk is bounded from the top H, and is presumably much larger than262

d. A natural choice for lk is the PP skin depth
√

2Dd/u0, where D = k0/βµΦ is the263

PP diffusion coefficient, and t−1
0 = u0/d is the frequency of deformation. Assigning the264

non-dimensional variables in equation (7) results in:265

∂P̂

∂t̂
=

D

lku0

∇̂1 · (k̂∇̂2P̂ )− 1

Φ
∇̂1 · ûs − d

lk
ûs · ∇̂2P̂ . (8)266
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In this non-dimensional analysis, the forcing, third term, may be regarded as the pivot,267

because without this forcing, a system with an initially uniform distribution of excess PP268

will not evolve. Since d/lk ¿ 1, the fourth term (the gradient part of the Lagrangian269

derivative) is negligible relative to the first and third terms, and equation (8) may be270

rewritten as:271

∂P̂

∂t̂
=

D

lku0

∇̂1 · (k̂∇̂2P̂ )− 1

Φ
∇̂1 · ûs, (9)272

where only three terms are left. In a dimensional form, equation (9) reads:273

∂P

∂t
=

1

βΦµ
∇ · [k∇P ]− 1

βΦ
∇ · us. (10)274

The relative importance of the diffusion term, the second term in equation (10), depends275

on the magnitude of the coefficient D/lku0 from equation (9), which may be interpreted276

as the ratio between diffusion rate D/lk and deformation rate u0. When D/lku0 ¿ 1, this277

diffusive term becomes negligible relative to the first term and the system is denoted as278

poorly diffusive. The dimensional excess PP may then be evaluated as:279

P (x, t) = − 1

β

∫ t

0

∇ · us(x, t′)
Φ(x, t′)

dt′, (11)280

where P depends on the fluid compressibility, β.281

For D/lku0 À 1, the first term of equation (10), the time dependent term, becomes neg-282

ligible relative to the second diffusion term, and the system is denoted as highly diffusive.283

The dimensional excess PP gradient is then evaluated as:284

∇ · [k(x, t)∇P (x, t)] = µ∇ · us(x, t), (12)285

or in the 1D case as:286

∂P (z, t)

∂z
=

µ

k(z, t)
usz(z, t) + C(t) (13)287
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where usz is the z component of the solid grains velocity and C(t) is an integration factor.288

Note that equations (12) and (13) are independent of the fluid compressibility, β. This289

corresponds to a regime where the fluid may be considered as incompressible.290

Such a non-dimensional analysis is not commonly performed in engineering applications291

of soil liquefaction. Instead, the time dependent term is normally neglected even when a292

poorly diffusive system is considered due to the small value of fluid compressibility [e.g.293

Garga and Zhang , 1997; Kozlov et al., 1998]. However, in addition to the non-dimensional294

analysis presented above that indicates that this term should be taken into account when295

the PP diffusion coefficient is small enough, a simple thought experiment can demonstrate296

its importance: Consider a sealed system with an initial uniform distribution of pressure297

that is being loaded uniformly, the diffusive term in equation (10) is thus zeroed. If298

the time dependent term would have been neglected then equation (10) would reduce to299

∇ · us = 0, i.e. no deformation could take place due to fluid resistivity to both flow and300

compression. In contrast, when the time dependent term is accounted for, it is found that301

the PP evolves at a rate proportional to β−1, so that the small value of the compressibility302

leads to rapid PP elevation.303

The form of the forcing term in equation (10) is intuitive in the framework of poroplas-304

ticity: when a fluid-filled granular system compacts and pore volume collapses, ∇·us < 0,305

and the PP is expected to rise. When the system dilates, ∇ · us > 0, and the PP will306

drop. Furthermore, the form of the forcing as dependent on the local grain velocities307

suits a straightforward plugging of equation (10) in a model of coupled grains and fluid308

implemented with discrete elements method of the form of Okada and Ochiai [2007].309
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It is sometimes convenient to express the forcing term as a function of the porosity310

evolution rather than the divergence of the solid grains velocity. From the grains mass311

conservation, equation (1), it is found that312

(1− Φ)∇ · us =
∂Φ

∂t
+ us · ∇Φ. (14)313

When the initial porosity and the rate of porosity evolution are assumed uniform [e.g.314

Walder and Nur , 1984; Snieder and van der Beukel , 2004], or when only average quantities315

are of interest, us · ∇Φ = 0 and (1−Φ)∇ ·us = ∂Φ/∂t. Under these restrictions equation316

(10) may be rewritten as317

∂P

∂t
=

1

βΦµ
∇ · [k∇P ]− 1

βΦ(1− Φ)

∂Φ

∂t
. (15)318

Formulations similar to our equations (10) or (15) are found in other works dealing319

with the response of PP to granular and porous matrix deformation [Walder and Nur ,320

1984; Wang , 2000; Samuelson et al., 2009], some of them specifically in the context of321

soil liquefaction [Bachrach et al., 2001; Snieder and van der Beukel , 2004]. Appendix A322

demonstrates how these models may be directly compared to our formulation.323

3. Poroelastic Pore Fluid Pressurization and Liquefaction

As the formulation presented here is not restricted to a specific rheology (poroelastic and324

poroplastic), the possibility of generating high enough PP for liquefaction to occur with a325

poroelastic mechanism is next examined. For that, we revisit a formulation developed by326

Wang [2000] describing one-dimensional spatio-temporal evolution of PP in response to327

temporal stressing of a fluid-filled porous material [Wang , 2000, equations 3.65 and 6.14]:328

∂P

∂t
=

k

µS

∂2P

∂z2
− γ

∂σzz

∂t
. (16)329
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Where S is the uniaxial specific storage in Pa−1, γ is the dimensionless loading efficiency,330

and σzz is the external elastic loading stress in Pa. k/µS is a space and time constant331

diffusion coefficient, and γ∂σzz/∂t is the forcing term. Equation (16) is equivalent to332

equation (A1) that is shown in Appendix A to be equal to our equation (10) when we333

assume that ∇ · us occurs by elastic deformation only. Appendix A also demonstrates334

the equivalency between equation (16) and the formulation in Bachrach et al. [2001]335

under the assumption of negligible inertia. Thus, any conclusion drawn from this analysis336

applies also to the formulation discussed in section 2. Equation (16) is most suitable for337

investigating the poroelastic liquefaction hypothesis because its forcing term is given in338

the form of time dependent elastic stress loading, such as a seismic pressure wave. Indeed,339

Wang [2000] studied the behavior of equation (16) with the loading of a periodic stress340

wave.341

Wang [2000, equation (6.57)] presented an analytical solution of equation (16) along a342

half space, with forcing, σzz, of the form:343

σzz(0, t) = −σ0 exp(iωt) (17)344

where σ0 is the amplitude of the pressure wave and ω is the loading frequency. The top of345

the domain is taken as drained and hence P (z = 0, t) = 0. Figure 1 shows the resultant346

PP magnitude, |P |, scaled by γσ0, as a function of the scaled depth, z/lk. Note that the347

maximum value of the loading efficiency, γ, is 1. This maximum value corresponds to348

the case of low shear modulus for which Bachrach et al. [2001] find the maximum value349

of PP. Figure 1 and Wang [2000] analysis indicate that when the loading efficiency is350

maximal, the maximum value of PP obtained in a fluid-filled poroelastic media when a351

D R A F T February 14, 2010, 7:37pm D R A F T



GOREN ET AL.: MECHANICS OF FLUID-FILLED GRANULAR MATERIAL X - 19

seismic P-wave passes is bounded by 1.07σ0. That is, PP cannot exceed the stress wave352

amplitude by more than 7%.353

For liquefaction to occur, PP must reach lithostatic values [Sawicki and Mierczynski ,354

2006]. If we consider a soil column with a thickness of 1 m, the lithostatic pressure at its355

base is about 25 KPa, while the hydrostatic pressure is 10 KPa. Therefore there is a need356

to generate excess of P = 15 KPa for liquefaction to occur at a depth of 1m. For the357

poroelastic liquefaction to occur, the forcing magnitude then must be 14 KPa, two orders358

of magnitude larger than typical amplitudes of seismic pressure waves [Bachrach et al.,359

2001]. If we consider a fault gouge at depth of 15 km, the excess PP needed for complete360

liquefaction is about 0.2 GPa. The excess PP generated by the poroelastic mechanism with361

a forcing wave of 100 Pa (typical value for seismic pressure wave) is a negligible fraction362

of the needed value. These simple examples indicate that the poroelastic mechanism363

is applicable only for the top few centimeters of the grains-fluid column, or when PP364

is initially very close to lithostatic values. Therefore, in the next section we turn back365

to study the classical poroplastic volume collapse mechanism using a simple prescribed366

plastic matrix deformation model.367

4. The Infinite Stiffness Approximation

The formulation presented so far is applicable to a general fully coupled system. But368

in order to actually solve the fully coupled system, another equation for the evolution369

of the solid grains velocity needs to be prescribed. In this equation PP gradients act as370

a force on the granular matrix directed toward the lower fluid pressure [e.g. McNamara371

et al., 2000]. Such forces are sometimes referred to as seepage forces [Mourgues and372

Cobbold , 2003; Rozhko et al., 2007]. However, here we first solve a simpler scenario - the373
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infinitely stiff system, which means that the matrix deformation is externally prescribed374

and the PP responds to this deformation. The reason we do not immediately solve also375

the other direction of the deformation of the solid matrix in response to PP gradients, is376

because currently there is no first principles based theory that predicts the general (elastic377

and plastic) granular matrix deformation induced by a PP field that varies spatially and378

temporally. Moreover, currently there is not even a first principles based theory that379

predicts the deformational response of a dry granular matrix to general loading [Forterre380

and Pouliquen, 2008]. To overcome this limitation, previous works that solve for the fully381

coupled system with a continuum approach use phenomenological relations to describe the382

porosity evolution in response to external loading and PP variations [e.g. Snieder and van383

der Beukel , 2004; Samuelson et al., 2009]. Consequently they are restricted to a specific384

type of deformation, material properties and boundary conditions. It is proposed that a385

general solution for the effect of PP variation on the matrix deformation, and thus a fully386

coupled solution for the general deformation of grains-fluid system may be achieved in387

the framework of a granular dynamics algorithm [e.g. McNamara et al., 2000; El Shamy388

and Zeghal , 2007; Okada and Ochiai , 2007].389

In the infinite stiffness approximation presented here, local pore volume collapse is ex-390

ternally prescribed and is characterized by ∇·us < 0 in equation (10) or Φ̇ < 0 in equation391

(15), which leads to pore fluid pressurization and to the generation of PP gradients and392

seepage forces. In a fully coupled formulation the pressure gradients will oppose the pore393

collapse deformation and will act to push the pore walls aside and somewhat relax the394

source of pressurization. For that reason the maximum PP within a fully coupled sys-395

tem is limited by the order of magnitude of the confining stress that drives pore volume396
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change. In that sense the resultant absolute value of the PP achieved under the infinite397

stiffness approximation serves as an upper bound with respect to a fully coupled system.398

4.1. Application to Shearing of Fluid-Filled Uniform Granular System

Here we explore the physical behavior of equation (10) under poroplastic conditions.399

This exploration is a first step in mapping the conditions that will cause liquefaction by400

irreversible pore volume collapse during shear of a granular system. For that, a simple401

system of hexagonally packed uniform grains immersed in fluid is studied (Figure 2).402

The top boundary is subjected to a constant shear velocity, Vsh, in the x direction. The403

system is assumed to respond in localized shear deformation along one row of grains404

(Figure 4a, sliding row in yellow). Along the x direction the system is assumed periodic405

and hence the divergence of the velocity is reduced to ∇ ·us = ∂usz/∂z, and the problem406

becomes one dimensional. The porosity, Φ, and the granular velocity perpendicular to407

the shear direction, usz, of the sliding row of grains are functions of time, t (and thus of408

displacement, x) (Figure 3):409

usz = Vsh
[cos(π/3)− Vsht

′/d]

A
(18)410

Φ = 1− π

4A
411

A =
√

1− [cos(π/3)− Vsht′/d]2.412

where t′ = (t+x′/Vsh) mod (d/Vsh), and x′ depends on the initial conditions as explained413

below.414

The simulated domain of thickness h is assumed to be buried at depth H (where h ≤ H),415

so that excess PP of P = σd is interpreted as resulting in zero effective stress and the onset416

of liquefaction. The shearing row is located at distance ζ = h/2 from the boundaries of the417
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system. Three scenarios are tested. In the first two cases, ζ ¿ lk, so that the grains pack418

has a vertical dimension smaller than the PP skin depth, lk: In a drained system, denoted419

as B.C. of type 1, a constant PP of P = 0 is assumed at the top of the system as if an open420

fracture drains the buried domain at its top. In an undrained system, denoted as B.C.421

of type 2, zero fluid flux across the top boundary is assumed, simulating an impermeable422

layer that lies on top of the domain. In these two cases the bottom boundary is assumed423

undrained. In the third case, a large system is considered where ζ À lk, denoted as B.C.424

of type 3, to allow the development of a full diffusion profile. In this case, the exact details425

of the prescribe boundary conditions have only minor importance as the advancing PP426

diffusion front does not reach the boundaries in the studied time scale. Table 1 summarizes427

the parameters used in the simulations.428

Two types of initial conditions are studied: In the first, denoted here as dense packing,429

the sliding row is initially in a hexagonal configuration (Figure 4a, sliding row in yellow),430

and x′ = 0. In this case, sliding is accompanied by initial dilation until a cubic con-431

figuration is reached along the sliding row. Then, the system compacts until hexagonal432

packing is reached again. A full period is the duration between two consecutive hexago-433

nal configurations. In the second initial condition, termed here loose packing, the sliding434

row is placed in a cubic configuration with respect to the row below it (Figure 7a), and435

x′ = 0.5d. In this case, the system first compacts to a full hexagonal configuration and436

then dilation along the sliding row brings it back to a cubic configuration. Here a full437

period is the duration between two consecutive cubic configurations.438
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The set of equations (10) and (18) together with Carman-Kozeny equation (Table 1)439

for the relation between porosity and permeability are solved numerically using a 1D440

Crank-Nicholson scheme.441

4.1.1. Dense Packing442

First, the case of dense initial grain packing is studied, i.e. all rows are hexagonally443

packed.444

Drained system: Simulation results show that when the system is drained (B.C. of445

type 1), the excess PP, initially taken as zero, becomes negative when the system starts to446

dilate as it shears (Figure 4b, red curve). As deformation continues, fluid influx from the447

top boundary, driven by the pressure gradient that forms between the top of the domain448

and the location of deformation, decreases the magnitude of this negative value. When a449

cubic configuration is reached, i.e. the system has slid to its maximal porosity, PP is zero450

again. During compaction, PP rises until it gets to its maximal value when the system is451

back in hexagonal packing.452

The parameters of Table 1 imposes a highly diffusive regime, and the proximity of the453

drained boundary to the shearing row, ζ ¿ lk, allows good drainage. Therefore, PP454

evolution is described by equation (13). The pressure gradient may then be estimated as455

∂P/∂z = −P/ζ, and the PP along the sliding row is evaluated as:456

P = −µζ

k
usz, (19)457

The PP evolution according to equation (19) is compared to the numerical solution (Figure458

4b, dashed turquoise curve), where the permeability k = kmin is taken as the permeability459

resulting from the porosity of the hexagonal packing that is constantly preserved in this460
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example, on top of the sliding row. Excluding the very onset of the motion that is governed461

by the time dependent term of equation (10), the analytical and numerical solutions match.462

Equation (19) reveals that in the drained case the value of the PP along the shearing463

row depends linearly on the fluid viscosity, µ, the distance to drainage, ζ, and on the464

inverse of the permeability k−1. For Carman-Kozeny law (Table 1), k = k(d2), and thus465

P ∝ d−2. All these dependencies, together with fluid compressibility independency, were466

verified in a parameters sensitivity study.467

When accounting for the relations in equation (18), another dependency may be es-468

tablished. The maximum value for the PP, Pmax is attained at the end of the pe-469

riod, when t′ = d/Vsh. Assigning this value of t′ in equation (18), it is found that470

usz(t
′ = d/Vsh) = −Vsh/

√
3. Combining this results with equation (19) predicts a linear471

relation between Pmax and shear velocity, Vsh, as depicted in Figure 5.472

Undrained system: For an undrained system (B.C. of type 2), the excess PP be-473

comes increasingly negative during dilation and returns to zero when the system com-474

pacts again (Figure 4c). This occurs because during dilation the pore volume expands475

and ∇·us > 0. With no fluid supply from the boundaries, the average PP must decrease.476

During compaction ∇ · us < 0 and PP increases back to the initial zero value. The ex-477

cess PP is negative throughout this simulation so that overpressure is not generated. We478

derive an analytic solution for the undrained case when loose packing is considered below.479

Large system: The third scenario of a large system with ζ À lk (B.C. of type 3) shows480

PP evolution that is a combination of the drained and the undrained regimes (Figure 4d,481

purple curve). Initially PP evolves similarly to an undrained system. However, the effect482

of fluid flow oriented towards the shearing row compensates for the negative value, so that483
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minimum PP is attained before cubic packing, and PP increases to positive value at the484

end of the period similar to a drained system.485

It is possible to derive an analytic solution for the case of large systems assuming the486

diffusion coefficient is constant with time i.e. D = Dc = kmin/βµΦmin. Appendix B487

shows this derivation and figure 6 presents the comparison between the analytic solution488

and simulation conducted with the imposed constant diffusion coefficient Dc along the489

shearing row. The analytic prediction reveals that the characteristic pressure scale for the490

evolving PP may be expressed as d/β
√

πDct0. For the parameters of Table 1 this scale is491

∼1.5 MPa, which is the order of PP magnitude that is found in figure 6.492

4.1.2. Loose Packing493

Next, initially loose packing systems are sheared. During the first half of the period,494

for all boundary conditions, the system compacts and PP increases. Maximum values are495

attained in the middle of the period when the systems are in hexagonal configuration. We496

next review the systems behavior during the second half of the period, when they dilate497

back to cubic packing.498

Drained system: When a drained system starts dilating in the second half of the499

period, PP first drops to a negative value and then rises back to zero due to fluid influx500

from the boundary (Figure 7b). Again, linear relation (with opposite signs) between usz501

(Figure 7a, green curve) and P (Figure 7b) following equation (19) is observed.502

Undrained system: For the undrained system, in the second half of the period, when503

dilation starts, PP returns to zero from its maximal value (Figure 7c, black curve). Here,504

excess PP is positive throughout the simulation. In this case of undrained boundary and505

ζ ¿ lk, PP diffuses only inside the small system but there is no inflow and outflow to506
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and from the domain. As a result, the diffusive term of equation (10) becomes negligible507

when evaluating the total excess PP within the domain. Thus, the system should follow508

equation (11) as if it is poorly diffusive. Evaluating ∇ · u as usz/d and assigning the509

expressions for usz and Φ from equation (18):510

P = − 1

β

{
π

4
ln

[
π − 4A

π − 4

]
+ A− 1

}
(20)511

A =
√

1− [cos(π/3)− Vsht′/d]2.512

Comparison between equation (20) and the numerical solution assuming PP does not513

diffuse away from the shearing row (by setting the permeability to zero) shows good514

fit (Figure 7c, inset). Equation (20) indicates that in the lack of PP diffusion, P is515

independent of shearing velocity, Vsh, but is a function of the inverse fluid compressibility,516

β−1. The smaller is β, the larger will be the PP along the domain.517

Large system: A large system with ζ À lk shows that in the second half of the period,518

upon dilation, PP decreases to a negative value, but the period ends with an increasing519

trend (Figure 7d). The overall evolution of PP is a combination of the drained and the520

undrained regimes, with minimum PP occurring not immediately upon dilation initiation521

like in a drained system and not at the end of the period like in an undrained system, but522

in between. This is the effect of competition between depressurization resulting from the523

time dependent term of equation (10) and fluid inflow originating from the diffusion term524

of equation (10).525

4.1.3. Results526

This analysis indicates that when the system is undrained with ζ ¿ lk (B.C. of type527

2) shearing of initially dense granular material generates only negative excess PP. When528

an initially loose configuration is sheared, pore fluid is pressurized and reaches 0.16 GPa,529
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a value corresponding to σd at depth of 10 km, or alternatively, a value that reduces530

the effective stress along gouge material buried at depth of 15 km by more than 70%.531

It should be remembered that under the infinite stiffness approximation used here, we532

do not prescribe a confining stress, and the value of PP is not limited, but it is simply a533

function of the overall pore volume strain. In this framework, soil liquefaction at shallower534

depth will take place earlier in the period. For example, reaching P = σd at a depth of535

10 m requires the generation of excess PP of 0.15 MPa that occurs after 1% of a period536

(t = 0.01d/Vsh). When the infinite stiffness assumption is relaxed, the value of maximum537

PP is expected to be bounded by the order of magnitude of the confining stress because538

PP gradients between the system interior and exterior will act to oppose further pore539

volume compaction and limit pressurization to the exact value that dynamically balances540

the forces acting to compact pore volume.541

When some drainage exists (B.C. of types 1 and 3) pore fluid pressurization (to positive542

values) occurs even when the granular matrix is initially dense or over-consolidated, as543

is called in soil mechanics. For the completely drained system (B.C. of type 1) excess544

PP becomes positive simultaneously with the initiation of compaction, and reaches a545

maximum of 0.21 MPa (for Table 1 parameters) corresponding to the effective normal546

stress at depth of 14 m. For a large system (with ζ À lk), B.C. of type 3, PP becomes547

positive after some delay from the onset of compaction, and reaches a maximum of 3.3548

MPa (for dense packing) at the end of the second period, corresponding to the effective549

stress at great depth of 220 m. In these cases pore fluid pressurization occurs even for550

initially dense systems as long as there is a compaction phase that follows the dilation.551
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5. Discussion

This section discusses the physics of PP evolution is response to granular matrix de-552

formation that arises from our theoretical formulation. We also discuss the implications553

of this physics to numerical, experimental and natural systems. First, we consider the554

mechanisms that control changes in PP based on the formulation presented in section 2.555

The basic equations for the PP evolution, equations (10) and (15), predict two different556

physical mechanisms that compete in controlling the evolution of PP, but their relative557

contribution is determined by the parameters and boundary conditions of the system. The558

two mechanisms are A - pressurization and depressurization induced by changes of pore559

volume (equation (11)) , and B - pressurization and depressurization induced by Darcy560

flow (by equations (12) and (13)).561

In mechanism A, pore fluid that is isolated and trapped within a shrinking pore vol-562

ume is pressurized, while pore fluid isolated and trapped in expanding pore volume is563

depressurized. The magnitude of pressurization and depressurization is controlled by564

the fluid compressibility, and by the overall pore volume change that is expressed by565

∫ t
0 ∇ · us(x, t′) dt′ in equation (11). In that sense this mechanism holds memory of previ-566

ous states of porosity.567

The second mechanism, B, is less intuitive. Because of mass conservation, convergence568

(or divergence) of grains causes the pore fluid that resides between the grains to flows out569

of (or into) this region. Because porous flow obeys Darcy’s law, pressure gradients arise570

between the location of converging (or diverging) grains and the surrounding, to generate571

these flows. Here, PP evolves from the arising pressure gradients. The magnitude of the572

generated pressure gradient depends on the rate of grains convergence or divergence, as573
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expressed by usz in equation (13). This mechanism holds no a memory of previous states574

of porosity but pressurization depends on the instantaneous rate of pore deformation. PP575

evolution due to Darcy flow is normally not considered to cause liquefaction, although576

it may lead to significant pressurization. Moreover, because of its ’lack of memory’, this577

mechanism may lead to generation of high PP even when an initially dense granular matrix578

is sheared. Indeed, upon shearing an over-compacted layer, it will first dilate, and then579

oscillate around its critical porosity [Aharonov and Sparks , 2002; Gabet and Mudd , 2006].580

In the oscillatory stage, any compaction phase, with ∇·us < 0, will lead to pressurization581

despite the fact that the instantaneous porosity may be significantly larger than the initial582

porosity.583

The relative importance of the two pressurization mechanisms depends on both the584

internal properties of the system and the boundary conditions that may have different585

characteristics, such as a strong contrast between internal and boundary permeabilities.586

In order to account for the internal properties we define the diffusion number [Samuelson587

et al., 2009] that expresses the competition between two rates: The rate of pore pressure588

diffusion, D/lk, where lk =
√

2Dd/u0 is the PP skin depth, and the rate of deformation,589

u0. The ratio of these two rates that appears as the coefficient of the second term in590

equation (9), determines whether pore fluid is effectively trapped within a shrinking or591

expanding pore volume, or whether it may flow freely. When D/lku0 ¿ 1, the system is592

defined as poorly diffusive because PP cannot diffuse away or into a deforming pore volume593

during the time scale of deformation. When D/lku0 À 1, the system is defined as highly594

diffusive because PP can diffuse freely within the time scale of pore deformation. The595

drainage boundary conditions of the system are independent of the diffusion number. If we596

D R A F T February 14, 2010, 7:37pm D R A F T



X - 30 GOREN ET AL.: MECHANICS OF FLUID-FILLED GRANULAR MATERIAL

consider only the two end-members of completely drained boundaries that are connected597

to a constant pressure reservoir and completely undrained boundaries that prevent fluid598

inflow and outflow, then all four combinations of highly diffusive and poorly diffusive599

systems with drained and undrained boundaries are possible.600

We present here a simple three stages scheme that determines what will be the dominant601

mechanism for PP evolution, based on the diffusion number, drainage boundary conditions602

and system size. 1) Evaluate the diffusion number. If the system is poorly diffusive603

(D/lku0 ¿ 1), then mechanism A of PP evolution due to changes in pore volume will604

dominate regardless of the boundary conditions. If D/lku0 À 1, there is a need to move605

to the next stage. 2) Evaluate the ratio of the distance between the deforming zone and606

the boundary, ζ, to the PP skin depth, lk. If ζ/lk À 1, the system is large and both607

mechanisms of PP evolution, A and B, operate together (like the large system scenario,608

B.C. of type 3, that is tested in section 4.1). If ζ/lk ¿ 1, there is a need to move to the609

next stage. 3) Evaluate the drainage boundary conditions. If they are drained then the610

dominant mechanism is B, PP evolution due to Darcy flow (like B.C. of type 1). If they611

are undrained then mechanism A will dominate (like B.C. of type 2).612

In this scheme, the last situation of a small, highly diffusive system, with undrained613

boundary conditions is probably the most puzzling. In such a case, when the system614

undergoes compaction or dilation, pore fluid cannot flow away or into the system, so615

despite the fact that PP can quickly equilibrate within the system because it is highly616

diffusive, the evolution of the average PP will follow mechanism A. Next in the discussion617

we apply this scheme to numerical, experimental and natural systems.618
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5.1. Applications to Grains and Pore Fluid Modeling and Experiments

When modeling a finite system of grains and fluid, the system parameters, size and619

boundary conditions are determined in advance. If the system is small (ζ/lk ¿ 1) and620

undrained (B.C. of types 2), PP diffusion between the system and the surrounding is621

prohibited, and mechanism A, pressurization by changes in pore volume will dominate.622

Therefore, fluid compressibility must be accounted for, but diffusive effects may be ne-623

glected, and the relevant equation to solve is (11). Pore fluid pressurization is expected624

only if the system is compacting with respect to its initial porosity, and the magnitude of625

PP is proportional to the inverse of fluid compressibility.626

When modeling a small drained system (B.C. of type 1) the process of PP diffusion627

becomes crucial, and pressure gradients arise between the system interior and the bound-628

aries (that are kept at some constant pressure). The dominant PP evolution mechanism629

will be B, Darcy pressurization. Accounting for fluid compressibility will only introduce630

a short lived transient effect, and if this effect is not of interest it is sufficient to solve631

Laplace equation (12). Pore fluid pressurization is expected when the system compacts632

rapidly enough with respect to any former state and not necessarily with respect to the633

initial state. Generated PP is linearly proportional to the compaction rate, fluid viscosity,634

distance to drainage, and the inverse of permeability.635

When modeling a large system, (B.C. of type 3), the drainage conditions along the636

boundaries do not dictate the system dynamics and both pressurization mechanisms, A637

and B. In this case, both the diffusive term and the time dependent term with fluid638

compressibility should be accounted for, and the full fluid equation (10) should be solved.639
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We may now turn to analyze the two numerical models of El Shamy and Zeghal [2007]640

and Okada and Ochiai [2007] that are presented in section 1.1. El Shamy and Zeghal [2007]641

report the occurrence of liquefaction under drained conditions and with incompressible642

fluid. Liquefaction starts at the top of the grains column, close to the drained boundary.643

Such conditions lead to pressurization by mechanism B due to Darcy flow. Okada and644

Ochiai [2007] report the occurrence of liquefaction when compacting loose, undrained645

system with compressible fluid. Such conditions lead to pressurization by mechanism A646

due to pore volume compaction. Thus, these two models simulate the two end-member647

mechanisms that are included in equation (10).648

Interpretation of experimental results should follow a similar scheme. Samuelson et al.649

[2009] perform an experimental series of shearing fluid-filled granular material using a650

triaxial pressure vessel in a double direct shear configuration. We briefly revisit here651

their system, in order to demonstrate the applicability of our analysis to experiments.652

The parameters in the experimental system are: ζ = 2 × 10−3 m, d = 1.27 × 10−4 m,653

u0 = 10−6 − 10−4 m/s, Φ = 0.2, and k = 4.2 × 10−14 m2. PP was kept constant on the654

boundaries. This combination of parameters leads to a drained, small (ζ/lk ¿ 1), and655

highly diffusive (D/lku0 À 1) system, and as a result negative PP cannot be sustained656

after the onset of dilation. Indeed, Samuelson et al. [2009] report that upon dilation657

no hardening is observed because fluid inflow immediately compensates for the newly658

generated pore space.659
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5.2. Application to Natural Systems

The scheme presented above may also be used to analyze the mechanics of PP evolution660

for field cases. One should evaluate the diffusion number of the system, determine the661

location and type of its boundaries, and the system size.662

5.2.1. Liquefaction of Shear Zones663

As a first natural system we consider shear zones that accommodate long shear strain,664

similar to the uniform grain system that is studied in section 4.1. Critical state theory665

predicts and experiments have shown that during shear, loose soils contract while dense666

soils dilate [Casagrande, 1936]. Invoking this theory to explain liquefaction of shear zones667

leads to the conclusion that while loosely packed shear zones may liquefy due to grain668

collapse leading to PP increase and the reduction of frictional resistance, dense shear zones669

inhibit liquefaction as they do not allow pore fluid to be pressurized [Iverson et al., 2000].670

Indeed, if the shear zone of a landslide is confined by impermeable barriers, then the PP671

evolution within it will follow mechanism A. In that case, only initially loose shear zones672

may become pressurized enough to facilitate mobilization of a landslide into debris flow.673

However, in many cases, the shear motion at the base of landslides and also during674

earthquakes is large enough for the shear zone to reach its critical porosity [Iverson,675

2005]. That is, an over-compacted shear zone will first dilate, and then after the first676

several centimeters to several meters [Iverson, 2005; Garagash and Rudnicki , 2003] it will677

oscillate around some steady state porosity. Such oscillations include also compacting678

phases, not with respect to the initial over-compacted configuration, but with respect to679

the critical porosity. If the shear zone is well drained, then mechanism B of pressurization680

by Darcy flow may operate, causing significant pressurization, and potentially leading to681
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acceleration of shear. Gabet and Mudd [2006] report on debris flows mobilization from682

dense soils, and find correlation between mobilization and fines/sand ratio, where soils683

with a small ratio are mobilized. Following the analysis presented here, it is suggested684

that small fines/sand ratio contributes to good drainage of the shear zone, due to the685

larger fraction of large sand particles. Thus, any short compactive stage that followed the686

initial dilative phase, a scenario that is reviewed in Gabet and Mudd [2006], may lead to687

pressurization by mechanism B due to Darcy flow, and thus will generate an accelerating688

debris flow. In fact, since most shear zones are initially over-compacted, we consider this689

mechanism to dominate.690

5.2.2. Soil Liquefaction691

Next we address the mechanism of PP evolution during soil liquefaction. The classical692

view of soil liquefaction attributes the rise of PP to cyclic strain forcing of the soil skele-693

ton [Sawicki and Mierczynski , 2006]. The formulation developed in section 2 is general694

and does not assume specific forcing, but the analysis of shearing uniform grain system695

presented in section 4.1 is built upon continuous shearing. We claim here that if the cyclic696

strain is large enough to allow both dilation and compaction of a single grain (shear strain697

≥ grain radius), then the behavior observed for continuous shearing is analogous to cyclic698

shearing. Still, positive PP may evolve only if the soil experiences some compaction dur-699

ing its deformation, but whether compaction actually occurs and its magnitude depend700

strongly on its initial porosity and on the duration of the applied force, that are beyond701

the scope of this paper. Here we study the mechanisms by which PP may evolve given an702

optimal deformation of the soil skeleton.703

D R A F T February 14, 2010, 7:37pm D R A F T



GOREN ET AL.: MECHANICS OF FLUID-FILLED GRANULAR MATERIAL X - 35

We start analyzing the conditions and mechanisms for soil liquefaction induced by the704

passage of seismic shear waves by choosing a set of typical parameters. We account for pore705

water and use water compressibility and viscosity from Table 1. The porosity is taken to706

be Φ = 0.46, that corresponds to medium void ratio for 3D packing of spheres [Okada and707

Ochiai , 2007]. We analyze the situations of medium sand and of silt with grain diameter708

of d = 5×10−4 and 5×10−5 m, respectively, and corresponding permeabilities of k = 10−10
709

and 10−14 m2. These permeabilities are smaller than predicted by Carman-Kozeny (in710

particular for the silt) as it is assumed that grain size is not completely uniform. The711

velocity of deformation is taken to be the peak ground velocity (PGV) induced by the712

seismic waves. We use u0 = 0.1 m/s that is estimated to be the minimal PGV that induce713

liquefaction [Kostadinov and Towhata, 2002]. For these parameters, the PP skin depth714

and diffusion number are lk = 2.2 m and D/lku0 ∼ 2000 for the sand and lk = 6.9×10−3 m715

and D/lku0 ∼ 70 for the silt, so that for both soil types the system is highly diffusive. If we716

consider that the source of liquefaction lies at a depth of 5 m, and this is also the distance717

to the drained boundary, ζ, then for both the medium sand and for the silt, ζ/lk > 1,718

and the system is large. Following the scheme presented above, both mechanisms of PP719

evolution, A and B, should be considered. Due to the large diffusion number, mechanism720

B of PP evolution by Darcy flow is expected to be more significant, similar to the results721

of the large system (B.C. of type 3) that was analyzed in section 4.1.722

Larger permeability and smaller PGV will lead to larger lk and larger diffusion number,723

and will cause mechanism B to be even more dominant. However, such conditions are724

also expected to decrease the magnitude of the evolving PP because with accordance725

to equation (19) evolving PP depends linearly on the PGV, and on the inverse of the726

D R A F T February 14, 2010, 7:37pm D R A F T



X - 36 GOREN ET AL.: MECHANICS OF FLUID-FILLED GRANULAR MATERIAL

permeability. For example, if the permeability of the medium sand is as large as k =727

10−9m2, and the PGV is u0 = 0.01 m/s, then lk = 22 m is much larger than ζ. In such a728

case only Darcy pressurization (mechanism B) will be of importance, and the maximum729

PP, according to equation (19) is 0.05 MPa, while the excess PP needed for liquefaction730

at depth of 5 m is 0.075 MPa.731

Smaller permeability and larger peak ground velocity will cause the diffusion number to732

be much smaller, leading to dominance of mechanism A. However, for the system to be733

strictly in the poorly diffusive regime, and accounting for PGV of 0.1 m/s, the medium734

sand permeability needs to be smaller than 2 × 10−17 m2, which is significantly smaller735

than expected for natural sands.736

This simple analysis shows that the process of soil liquefaction is similar to the large737

system (B.C. of type 3) studied in section 4.1, and that both mechanisms of PP evolution738

may operate together. Because the diffusion number is large, positive PP may evolve even739

if the soil is not strictly compactive, as long as some transient compaction occurs, similar740

to the case studied in Figure 7d.741

5.2.3. Nucleation of Motion Along Faults742

Finally in the discussion we address the evolution of PP during the stage of sliding743

nucleation along fault zones. Many fault zone systems are characterized by strong perme-744

ability contrast between the gouge material and the confining blocks, so that the gouge745

layer may be considered as the granular system while the confining blocks impose the746

drainage boundary conditions. We consider here a well-compacted thin gouge layer of747

thickness, 2ζ, of several centimeter. For the nucleation stage we consider a tectonic rate748

of deformation, u0 = 10−10 m/s. For the medium sand and silt, the small deformation749
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rate leads to ζ/lk ¿ 1, and to a very large diffusion number. Even for clay size gouge750

with d = 10−6 m and permeability of k = 10−19 m2, ζ/lk < 1 and D/lku0 >> 1, so that751

the granular layer is small with respect to the PP skin depth, and the system is highly752

diffusive. According to the scheme presented above, the boundary conditions imposed by753

the confining blocks determine the mechanism of PP evolution. If the confining blocks754

are impermeable, the PP will evolve following mechanism A according to changes of pore755

volume, and negative excess PP will evolve in response to any dilation, resulting in dila-756

tancy hardening. If the confining blocks are highly fractured and allow for communication757

with a constant pressure reservoir then the PP will evolve following mechanism B, due758

to Darcy flow, fluid inflow will compensate for the newly generated pore volume, and759

hardening will not be observed [Samuelson et al., 2009].760

6. Conclusions

This manuscript presents a formulation describing pore fluid pressurization and flow in761

response to general granular matrix deformation, and is thus applicable to both elastic762

reversible deformation and to large scale irreversible deformation. The formulation is763

used to examine the conditions and processes by which pore fluid pressure evolves to764

large enough values that may lead to liquefaction of soils and shear zones.765

It is found that the relative degree of drainage expressed by the ratio between fluid766

diffusion and granular deformation rates, D/lku0, and by the boundary conditions is of767

great importance. When the ratio D/lku0 is small (for example, when the permeabil-768

ity is small), or the boundaries are undrained, pore fluid pressurization occurs only for769

initially loose granular matrices and is highly dependent on fluid compressibility, with770

faster pressurization for smaller compressibility. Under such conditions pressurization is771
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not correlated to the rate of deformation but to overall volumetric compaction. When the772

ratio D/lku0 is large, or when the boundaries are drained pore fluid pressurization occurs773

also in initially dense granular matrices during any later compaction stage that follows774

dilation. Here, PP depends on the compaction velocity, fluid viscosity, system perme-775

ability and distance to drainage, but is independent of fluid compressibility. This regime776

may explain liquefaction phenomena in initially dense and well drained soils and shear777

zones, conditions that were previously thought to be liquefaction resistant despite field778

evidences showing otherwise [e.g Soga, 1998; Gabet and Mudd , 2006]. For large system779

with dimensions that exceed the PP skin depth both fluid compressibility and the rate of780

deformation control fluid pressurization.781

Appendix A: Comparison with Other Models

Here, our equations (10) and (15) is compared to other models studying the response782

of PP to granular or porous matrix deformation. To facilitate comparison, the notation783

of this manuscript is adopted where possible.784

A1. Elastic Formulations

Wang [2000] presents two equivalent poroelastic formulations for the temporal and785

spatial evolution of PP in response to elastic forcing in a fluid-filled porous material. The786

first formulation describes the forcing as a temporal evolution of stress and is presented in787

equation (16). The second formulation describes the forcing in terms of temporal evolution788

of strain:789

∂P

∂t
=

kM

µ

∂2P

∂z2
− αM

∂εzz

∂t
(A1)790
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Equation (A1) follows Wang [2000, equation (6.18)] with notation simplification following791

Wang [2000, equations (3.37) and (3.64)]. Where M is Biot’s Modulus and α is Biot-Willis792

coefficient. When grains are assumed incompressible, M = 1/βΦ and α = 1 [Wang , 2000,793

table 3.2]. Therefore equation (A1) may be rewritten as:794

∂P

∂t
=

k

µβΦ

∂2P

∂z2
− 1

βΦ

∂εzz

∂t
(A2)795

This form is equivalent to our equation (10), since the forcing term ∂εzz/∂t, representing796

the one dimensional strain rate, may be rewritten as ∂usz/∂z. For example, for a periodic797

strain of the form εzz = ε0 exp(iωt), the corresponding grains velocity will be usz =798

∫
z(∂εzz/∂t)dz = iε0ωz exp(iωt). It is a surprising result that equation (A2) that was799

developed from a purely elastic point of view, is in fact equivalent to our equation (10)800

which did not assume elasticity. The only difference is Wang [2000] assumption of uniform801

permeability in the diffusion term (first term on the righthand side) of equation (A2),802

which does not necessarily hold for the general formulation of equation (10).803

Bachrach et al. [2001] present a study of the propagation of pressure waves in a poro-804

elastic material induced by stress forcing using Biot’s equations. Next, the equivalency805

between Bachrach et al. [2001] formulation and equation (16) (which follows Wang [2000,806

equation (6.14)]) is demonstrated under the assumption of negligible inertia, an assump-807

tion that is discussed in the following. Combining Bachrach et al. [2001, equation (7) and808

equation (11)] and neglecting inertial terms, it is found that:809

∂P

∂t
=

k

µ
2D

(
1− α

2αF

H

)
∂2P

∂z2
− 2αD

H

∂σ

∂t
(A3)810

As before, α = 1, is the Biot-Willis coefficient for incompressible grains. D = (2βΦ)−1 and811

H = K(u)
ν = Kν +(βΦ)−1, where K(u)

ν and Kν are the undrained and drained uniaxial bulk812
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moduli, respectively. H and D are resolved following their definition in Bachrach et al.813

[2001] and under the assumption of incompressible solid grains. Assigning the expressions814

for α, H and D into equation (A3) results in:815

∂P

∂t
=

k

µ

1

βΦ + K−1
ν

∂2P

∂z2
− 1

K
(u)
ν βΦ

∂σ

∂t
. (A4)816

Following [Wang , 2000, equation (3.52)], βΦ + K−1
ν = S, and following [Wang , 2000,817

equation (3.85) and table 3.2], (K(u)
ν βΦ)−1 = γ. Thus it is proven that equation (A4)818

(which is an inertia free version of Biot’s equations, as expressed in Bachrach et al. [2001,819

equations (7) and (11)]) is identical to Wang [2000, equations (6.14)] and to equation820

(16).821

Next, we wish to determine the limits for the validity of our assumption of negligible822

inertia. For that, Bachrach et al. [2001, equations (7) and (11)] are reviewed:823

ρb
∂2v

∂t2
+ ρf

∂2w

∂t2
=

∂σ

∂z
(A5)824

ρf
∂2v

∂t2
+ m

∂2w

∂t2
=

∂P

∂z
+

µ

k

∂w

∂t
,825

where ρb is the density of the fluid-filled porous material, m is a coupling coefficient, and826

v and w are the displacement field of the solid matrix and fluid, respectively. Introducing827

scale factors for each of the variables: v = w0v̂, w = w0ŵ, σ = P0σ̂,P = P0P̂ , z = Lẑ, and828

t = t0t̂, where t0 = (2πf)−1, and f is the forcing frequency in s−1. Assigning the scale829

factors in equation (A5), dropping theˆnotation, and considering the magnitude of the830

densities ρf , ρb and the coupling coefficient m to be of the same order:831

w0ρfL(2πf)2

P0

(
∂2v

∂t2
+

∂2w

∂t2

)
=

∂σ

∂z
(A6)832

w0ρfL(2πf)2

P0

(
∂2v

∂t2
+

∂2w

∂t2

)
=

∂P

∂z
+

µw0L(2πf)

kP0

∂w

∂t
.833
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Taking ρf = 103 kg m−3, L = 1 m, P0 = 100 Pa, and w0 = 10−7 m following the834

value used in Bachrach et al. [2001], it is found that the acceleration terms, lefthand835

side of equation (A6), are important only for frequencies of the order ≥ 100 Hz. Thus,836

for smaller frequencies Bachrach et al. [2001] formulation is equivalent to Wang [2000,837

equation (6.14)] formulation, which by itself was shown to be similar to our equation (10).838

A2. Non-Elastic Formulations

Walder and Nur [1984] study processes of PP generation due to porosity reduction,839

accounting also for non-elastic deformation [Walder and Nur , 1984, equation (5)]:840

∂P

∂t
=

k

µΦ(β + βΦ)
∇2P − 1

Φ(β + βΦ)

∂Φ

∂t irrev
. (A7)841

In this formulation, βΦ = (1/Φ)(∂Φ/∂P ) is the elastic pore compressibility, and842

(∂Φ/∂t)irrev is the irreversible porosity evolution. With some algebraic transformation843

equation (A7) may be rewritten as:844

∂P

∂t
=

k

µΦβ
∇2P − 1

Φβ

(
∂Φ

∂t rev
+

∂Φ

∂t irrev

)
(A8)845

where the pore compressibility was expanded as βΦ = (1/Φ)(∂Φ/∂t)rev(∂t/∂P ), and846

(∂Φ/∂t)rev is the reversible component of the porosity change. Equation (A8) resem-847

bles our equation (15) under the assumption of space independent permeability. The848

forcing term of equation (A8) that is divided between reversible and irreversible porosity849

reduction is expressed as a single term in our equation (15). Therefore the forcing terms850

are identical up to a factor of (1−Φ). This factor results from the different definitions of851

Darcy’s velocity: Walder and Nur [1984] use uf = − k
µΦ
∇P as if the matrix is stationary,852

while our formulation assumes that Darcy’s velocity is given by equation (3).853
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This section demonstrated that former formulation of PP generation by porous or gran-854

ular matrix deformation may be reduced to our equations (10) or (15). That is, the855

formulations of Wang [2000]; Bachrach et al. [2001]; Walder and Nur [1984] and the for-856

mulations of Snieder and van der Beukel [2004] and Samuelson et al. [2009] that are not857

discussed here, all describe the temporal evolution of PP as a combination of diffusion858

term and a forcing term.859

Appendix B: Analytical Prediction for a Large System (B.C. of Type 3)

Here we derive an analytical prediction for the temporal and spatial evolution of the860

PP for the model of fluid-filled uniform granular material packed in hexagonal packing861

under constant shear velocity that is presented in section 4.1. This solution applies to862

the case of a large system with ζ À lk, denoted as B.C. of type 3. The prediction is863

derived by solving equation (10) under the assumption of constant diffusion coefficient,864

Dc = kmin/βµΦmin, and using the granular velocity and porosity from equation (18). The865

equation to be solved is:866

∂P

∂t
= Dc

∂2P

∂z2
− 1

β
H(z, t), (B1)867

where H(z, t) expresses the forcing∇·usz/Φ that is concentrated along z = 0 (the shearing868

row) and is defined as:869

H(z, t) = δ(z)Vsh · uH(t), 0 < t < t0 = d/Vsh, (B2)870

and871

uH(t) =
usz

Φ
=

(0.5− t/t0)√
1− (0.5− t/t0)2 − π/4

. (B3)872

δ(z) is Dirac delta function with units of m−1 and it stands for the ∇ operator in equation873

(10). The solution of equation (B1) for P (z, t) may be expressed using a Green’s function874

D R A F T February 14, 2010, 7:37pm D R A F T



GOREN ET AL.: MECHANICS OF FLUID-FILLED GRANULAR MATERIAL X - 43

by the integral [McKenzie and Brune, 1972]:875

P (z, t) = − 1

2β
√

Dcπ

∫ t

0

∫ ∞

−∞
exp

[
− (z − zi)

2

4D(t− ti)

]
H(zi, ti)√

t− ti
dzidti. (B4)876

Assigning H(zi, ti) from equation (B2), equation (B4) is evaluated as [McKenzie and877

Brune, 1972]:878

P (z, t) = − Vsh

2β
√

Dπ

∫ t

0
exp

[
− z2

4D(t− ti)

]
uH(ti)√
t− ti

dti. (B5)879

To solve equation (B5) we first expand uH(ti) as a third order power series of ti using its880

third order interpolation polynomial, i.e. uH(ti) =
∑j=3

j=0 aj(ti)
j. Next uH(ti) is rewritten881

as a third order power series of (t− ti), uH(ti) =
∑j=3

j=0 bj(t− ti)
j, where bj = bj(t) is found882

by solving the system of linear equations:883

b0(t) = a0 + a1t + a2t
2 + a3t

3 (B6)884

b1(t) = −a1 − 2a2t− 3a3t
2

885

b2(t) = a2 + 3a3t886

b3(t) = −a3,887

and equation (B5) is rewritten as:888

P (z, t) = − Vsh

2β
√

Dπ

∫ t

0
exp

[
− z2

4D(t− ti)

] ∑j=3
j=0 bj(t− ti)

j

√
t− ti

dti. (B7)889

Next the following dimensionless variables are defined [McKenzie and Brune, 1972]:890

P̂ =
β

√
πDd/Vsh

d
P (B8)891

t̂i = ti/t0892

t̂ = t/t0893

ẑ =
1√

2Dct0
z894
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and equation (B7) may be written in a non-dimensional form:895

P̂ (ẑ, t̂) = −1

2

∫ t̂

0
exp

[
− ẑ2

2(t̂− t̂i)

] ∑j=3
j=0 bj(t̂)(t̂− t̂i)

j

√
t̂− t̂i

dt̂i (B9)896

= −

b0(t̂)

1

2

∫ t̂

0
exp

[
− ẑ2

2(t̂− t̂i)

]
1√

t̂− t̂i
dt̂i




897

−

b1(t̂)

1

2

∫ t̂

0
exp

[
− ẑ2

2(t̂− t̂i)

]
(t̂− t̂i)√

t̂− t̂i
dt̂i




898

−

b2(t̂)

1

2

∫ t̂

0
exp

[
− ẑ2

2(t̂− t̂i)

]
(t̂− t̂i)

2

√
t̂− t̂i

dt̂i




899

−

b3(t̂)

1

2

∫ t̂

0
exp

[
− ẑ2

2(t̂− t̂i)

]
(t̂− t̂i)

3

√
t̂− t̂i

dt̂i




900

= −
[
b0(t̂)I0 + b1(t̂)I1 + b2(t̂)I2 + b3(t̂)I3

]
,901

where Ii are the integrals. The solution for I0 from McKenzie and Brune [1972] is:902

I0 =
√

t̂ exp
−ẑ2

2t̂
− ẑ

√
π

2
erfc

(
ẑ√
2t̂

)
. (B10)903

Integrals I1 − I3 can be integrated in parts and reduced to I0 as following:904

I1 =
1

2

∫ t̂

0
exp

[
− ẑ2

2(t̂− t̂i)

]
(t̂− t̂i)√

t̂− t̂i
dt̂i (B11)905

= −1

2

∫ 0

t̂
exp

[
− ẑ2

2τ

]
τ 1/2dτ906

= −1

2

[(
2

3
τ 3/2 exp

[
− ẑ2

2τ

])
|0t̂ −

2

3

ẑ2

2

∫ 0

t̂
exp

[
− ẑ2

2τ

]
τ−1/2dτ

]
907

=
1

3

[
t̂3/2 exp

[
− ẑ2

2t̂

]
− ẑ2I0

]
908

Similarly, it can be shown that909

I2 =
1

5

[
t̂5/2 exp

[
− ẑ2

2t̂

]
− ẑ2I1

]
(B12)910

I3 =
1

7

[
t̂7/2 exp

[
− ẑ2

2t̂

]
− ẑ2I2

]
.911
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Equations (B6) and (B7) - (B12) give a full solution for P̂ (ẑ, t̂). Evaluating P̂ (ẑ, t̂) along912

the shearing row gives:913

P (0, t̂)
β

√
πDd/Vsh

d
= − 1

105

√
(t̂)(582.929− 1885.66t̂ + 2667.73t̂2 − 1524.38t̂3)(B13)914

where the coefficient of the interpolation polynomial for uH(t̂) are a0 = 5.5517, a1 =915

−26.938, a2 = 47.638 and a3 = −31.758. Figure (6) compares equation (B13) to simula-916

tion results conducted with constant diffusion coefficient, Dc, and B.C. of type 3. Figure917

(B8) compares the spatial pattern of PP at the end of the period (t̂ = 1) between simu-918

lations with B.C. of type 3 and the analytical prediction presented here.919
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Figure 1. Half space solution of system of equations (16) and (17), describing the spatial

evolution of PP in a poroelastic material under periodic stress loading and drained top. Maximum

magnitude of PP, |P |, is plotted as a function of normalized depth. |P | is bounded by 1.07γσ0,

where γ ≤ 1 is the loading efficiency and σ0 is the amplitude of the pressure wave forcing. The

relation between |P | and σ0 indicates that a poroelastic mechanism for liquefaction (see text) is

limited to the very top of the soil column. Adopted from Wang [2000, Figure 6.11].

Table 1. Model parameters for section 4.1

Symbol Parameter Value
β Water compressibility 4.5× 10−10 Pa−1

µ Water viscosity 10−3 Pa s
d Grain diameter 5× 10−4 m
h Granular layer thickness for B.C. of types 1, 2 0.01 m

Granular layer thickness for B.C. of type 3 4 m
Vsh Shearing velocity 0.1 m/s
Φmin Porosity of hexagonal packing 0.093
k Permeability (Carman-Kozeny) d2Φ3/180(1− Φ)2 m2

D Diffusion coefficient Dc = kmin/βµΦmin = 32.45 m2/s∗

lk PP skin depth
√

2Dct0 = 0.57 m †

∗ Value corresponds to the constant diffusion coefficient used in the analysis of a large system
(B.C. of type 3)

.

† Value corresponds to diffusion length scale calculated for the constant diffusion coefficient
of a large system analysis.
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Figure 2. Model geometry for section 4.1. An hexagonal packing of fluid-filled granular

material is being subjected to a constant shear velocity, Vsh. Shear displacement is accommodated

along a single row marked by the yellow grains. The boundaries along the x direction are periodic

and therefore, ∂usx/∂x = 0. d is a grain diameter, ζ is the distance to the boundary, and h is

system thickness.
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Figure 3. (a) Geometrical relations used for expressing usz. s is the vertical displacement, θ

is the contact angle between grains that depends on Vsh, t and d. usz is the time derivative of s.

(b) Geometrical relations used for expressing the porosity, Φ.
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Figure 4. Simulation results of shearing of densely packed fluid-filled granular material at a

constant shear velocity, Vsh, with parameters from Table 1. Shear is accommodated in a localized

manner along a single sliding row, depicted by yellow filled discs. The system first dilates to a

cubic packing and then compacts back to a hexagonal packing. Dilation and compaction induce

time and space dependent porosity, permeability and granular velocity. (a) Evolution of porosity

(blue) and usz/Vsh (green) along the sliding row as a function of the horizontal displacement, x,

scaled by grain diameter, d. (b) PP evolution along the sliding row that accommodates dilation

and compaction, when the top boundary is drained, and ζ ¿ lk (B.C. of type 1). Maximum

PP of 0.21 MPa is attained at the end of the period and corresponds to zero effective stress at

depth of around 14 m. Red curve is the simulation results and turquoise dashed curve is an

analytical prediction following equation (19). (c) PP evolution along the sliding row when the

top boundary is undrained with ζ ¿ lk (B.C. of type 2), showing that PP becomes increasingly

negative when the system dilates and then returns to zero upon compaction. (d) PP evolution

along the sliding row when ζ À lk (B.C. of type 3). A combination of the two previous regimes

is observed with maximum positive PP of 3.3 MPa at the end of the second period.
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Figure 5. Simulation results with B.C. of type 1 (blue diamonds) for the relation between

shear velocity Vsh and the maximum value of PP attained at the end of a shearing period.

Analytic curve for the same relation (green) is plotted based on equation (19) and the relation

usz = −Vsh/
√

3 that applies to the end if the period (see text), with Table 1 parameters and

permeability, kmin, induced by hexagonal packing porosity. The slope of the linear relation

between P and Vsh is a function of fluid viscosity, distance to drainage and inverse of permeability.
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Figure 6. PP along the shearing row for large system (B.C. of type 3), when the diffusion

coefficient is assumed constant Dc = kmin/βµΦmin. Purple curve is simulation results and the

dashed turquoise curve is the analytical prediction following equation (B13).
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Figure 7. Simulation results of shearing of loosely packed fluid-filled granular material at

a constant shear velocity, Vsh, with Table 1 parameters. Shear is accommodated in a localized

manner along a single sliding row, depicted by yellow filled discs. The system first compacts

from a cubic configuration to a hexagonal configuration, and then dilates back to cubic order.

(a) Evolution of porosity (blue) and usz (green) along the sliding row as a function of the

horizontal displacement, x, scaled by grain diameter, d. (b) PP along the sliding row that

accommodates compaction and dilation with drained top and ζ ¿ lk (B.C. of type 1) evolves

similarly to shearing of dense packing (Figure (4b)), but with a shift of half period. (c) PP

evolution along the sliding row with undrained top and ζ ¿ lk (B.C. of type 2) showing pore

fluid pressurization with maximum of 0.16 GPa, corresponding to zero effective stress at a depth

greater than 10 km, in the middle of the period. The inset shows simulation results (black curve)

for PP evolution along the sliding row when the permeability is zero throughout the system to

oppress PP diffusion, and analytical prediction (turquoise dashed curve) following equation (20)

that assumes no diffusion. (d) PP evolution along the sliding row when ζ À lk (B.C. of type 3),

showing a combination of the two previous regimes.
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Figure B8. Spatial distribution of PP for a large system (B.C. of type 3) at the end of the

period, t̂ = 1. The shearing row is in the middle of the domain. Purple curve is simulation results

and dashed turquoise curve is the analytical prediction for P (z, d/Vsh) following equations (B6)

- (B12).
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