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Abstract. We report on results from primary drainage experiments on quasi-two-
dimensional porous models. The models are transparent, allowing the displacement
process and structure to be monitored in space and time during water retention
experiments carried out at various speeds. The amount of extracted liquid, as well
as the global pressure difference over the setup, are also monitored in time. By
combining detailed information on the displacement structure with global measure-
ments of pressure, saturation and the capillary number Ca, we obtain a scaling
relation relating pressure, saturation, system size and capillary number. We also
obtain an expression for the Ca - and size - dependence of the residual saturation
in the wetting fluid at breakthrough, when the non-wetting fluid spans the entire
system length. This scaling relation allows pressure–saturation curves for a wide
range of capillary numbers to be collapsed on the same master curve, which relates
a non-dimensional pressure P ∗ to a non-dimensional saturation S∗ as S∗ = 1− P ∗.
The dynamic feature of the capillary pressures measured in our system is entirely
included in the Ca-dependence of the scaling law for pressures, and results from the
geometry of the displacement structure created by the interplay between viscous
and capillary forces. Therefore, for drainage, what is called dynamic effects in the
literature of experimentally measured capillary pressure curves, might be explained
by the combined effect of capillary pressure along the invasion front of the gaseous
phase, and pressure changes caused by viscous effects, from the pore scale and up
to the Darcy scale.
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1. Introduction

Different types of fluid displacements in porous media play important
roles in many natural and commercial processes (Bear, 1972; Dullien,
1992; Sahimi, 1995). Various multiphase problems have therefore been
extensively studied and modeled over the last decades; see (Bear, 1972;
Dullien, 1992; Sahimi, 1995; Lenormand, 1989) and references therein.

The morphology of the displacement structures observed in immis-
cible two phase flow, and thus the fluid saturation, are in general
controlled by the competition between viscous forces, gravitational
forces and capillary forces; those various forces act on scales rang-
ing from the pore scale to the system size. The relative wettabilities,
viscosities, and densities of the fluids, as well as the heterogeneity of
the underlying porous media, could all play important roles in the
competition process (Lenormand, 1989; Birovljev et al., 1991; Måløy
et al., 1985; Måløy et al., 1992; Frette et al., 1997).

In order to characterize two phase flow in porous media, it is common
practice to define a set of dimensionless numbers that quantify fluid pair
characteristics or the ratio of the different competing forces. One such
number is the viscosity ratio M = µnw/µw, where µnw is the dynamic
viscosity of the non-wetting fluid and µw is the dynamic viscosity of the
wetting fluid. The relative magnitudes of viscous and capillary forces
(on the pore scale) are quantified by the capillary number Ca:

Ca =
µw vf a

2

γ κ
(1)

where vf is the Darcy velocity or specific discharge, a is the char-
acteristic pore size, γ is the interface tension and κ is the intrinsic
permeability of the homogeneous and isotropic porous medium. The
specific discharge, or filtration velocity, vf, is given by

vf =
Q

A
(2)

where Q is the volumetric flow rate and A is the cross section area
perpendicular to the flow. For systems where gravity effects can be
neglected, the capillary number Ca and the viscosity ratio M are the
controlling parameters. In drainage, i.e. flow regimes where the non-
wetting fluid replaces the wetting one, three limit flow regimes can be
reached by tuning M and Ca (Lenormand et al., 1983; Lenormand
et al., 1988; Lenormand, 1989). If the flow rate is sufficiently low
(Ca ≪ 1), one reaches the capillary fingering regime (Lenormand et al.,
1983; Lenormand and Zarcone, 1985), for which the displacement struc-
ture is controlled solely by the fluctuations in the capillary threshold
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pressures at the displacement front. This regime is shown to have strong
analogies to invasion percolation (Lenormand and Zarcone, 1985; Chan-
dler et al., 1982; Wilkinson and Willemsen, 1983), and the invasion
structure is fractal (Mandelbrot, 1982; Feder, 1988) with a fractal di-
mension Dc = 1.83 ± 0.01 (Lenormand and Zarcone, 1985; Lenormand
and Zarcone, 1989). If the invasion rate is high, the displacement is
either stable or unstable depending on the viscosity contrast M . If a
fluid with high viscosity is invading a fluid with low viscosity (M ≥ 1),
the resulting pressure field due to the viscous dominated displacement
will act against the growth of the invasion front, leading to stabiliza-
tion of the displacement front at a finite width (Saffman and Taylor,
1958; Lenormand et al., 1988; Lenormand, 1989; Frette et al., 1997).
On the other hand, if the invading fluid is the less viscous one, the dis-
placement is unstable and falls in the viscous fingering regime (Saffman
and Taylor, 1958; Måløy et al., 1985). The invasion structure is fractal
with a fractal dimension Dv ≃ 1.53 (Toussaint et al., 2005).

While these limit configurations have received a large attention,
the more intermediate cases are less studied. In the limit configura-
tions, one of the involved forces usually dominates the problem, but
in intermediate regimes the involved forces are of the same order of
magnitude and can all play important roles in the displacement process.
At intermediate capillary numbers each of the various forces typically
dominates on different length scales. At small scales capillary forces
dominate the problem so that the invasion structure locally is that of
capillary fingering, while viscous forces dominate the problem at larger
scales, resulting in a morphology typical of viscous fingering at larger
scales. The crossover length-scale between these two regimes lc scales
with the capillary number as (Løvoll et al., 2004; Toussaint et al.,
2005):

lc ∝
a

Ca
. (3)

Above this crossover length scale the flow is destabilized by viscous
forces and the displacement takes place in narrow branched channels
(for M < 1). Viscous fingering in disordered porous media is different
from standard Saffman-Taylor fingering (Saffman and Taylor, 1958),
obtained in empty straight channels (Hele-Shaw cells), where the fingers
are compact and occupy 1/2 of the system width W . In contrast, in
disordered porous media these structures are branched, the invasion
structure is fractal (Måløy et al., 1985) and it has been demonstrated
that the invasion structure occupies a smaller fraction of the system
(0.4 W ) (Løvoll et al., 2004; Toussaint et al., 2005).

Many authors in the “physics community” have been mostly con-
cerned with characterizing and understanding displacement patterns
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and local flow properties. Hydrogeologists and soil scientists, on the
other hand, have studied such systems with the goal of finding empir-
ical laws relating saturation and capillary pressure at the Darcy scale,
that is, a meso-scale at which the medium and the flow are described
by continuous mathematical fields. The basic laws of multiphase flows
treated at mesoscopic scale as a continuum require a closure of partial-
flow Darcy relations. The key point of this closure is a functional
relation between the capillary pressure (in a water-air system) and (wa-
ter) saturation in the form of retention curves. The basic assumption
underlying this continuous theory of multiphase flow is that for a given
porous medium and a wetting-/nonwetting-liquid pair there is a well de-
fined relation between capillary pressure and saturation as found from
quasi-static measurements on representative volumes. The best known
mathematical models to describe the relationship are those of (Leverett,
1941), (Brooks and Corey, 1964) and (Van Genuchten, 1980). In
these models, the model parameters are fit parameter and they are
functions of the characteristics of the pore space, such as the pore size
distribution and the degree of connectivity of the network. As found in
the early sixties, the retention curves may also depend on the direction
and on the “displacement history” of the water-air front, further on re-
ferred as hysteresis effects (Poulavissilis, 1962; Mualem, 1976; Mualem,
1984; Kool and Parker, 1987; Parker and Lenhard, 1987; Luckner and
Van Genuchten, 1989; Lenhard et al., 1993; Stauffer and Kinzelbach,
2001). Based on the parameterization procedure proposed by (Parker
et al., 1987), the known retention curves of a porous sample are often
used to obtain capillary pressure-saturation curves for the different
fluid pairs present in a multiphase system (e.g. (Helmig, 1997; Bohy
et al., 2006)). Later studies have demonstrated that hysteresis effects
are not the only additional influence on this relationship and they show
that there are considerable dynamic effects on the measured capillary
pressure curves (Bourgeat and Panfilov, 1998; Hassanizadeh and Gray,
1988; Hassanizadeh et al., 2002; Dahle et al., 2005). Based on the
results of former experimental studies (Smiles et al., 1971; Stauffer,
1977), Hassanizadeh et al. (Hassanizadeh et al., 2002) suggested to
account for dynamic effects on the retention curves by introducing
a term of dynamic capillary pressure in the form of the sum of the
capillary pressure obtained under hydrostatic equilibrium conditions,
depending on the water saturation of the soil sample, and a dynamic
pressure term expressed by a lumped parameter times the variation of
water saturation over time.

The present paper addresses the gap between (i) capillary pressure as
understood in the framework of a pore scale description and modeling
of drainage, and (ii) capillary pressure as measured at the global scale
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of a sample or as described in Darcy-scale models. We present results
from drainage experiments on synthetic quasi two-dimensional porous
media, in which non-wetting air displaces a highly viscous wetting
glycerolerin/water solution; hence, gravity has no influence on the dis-
placement. We investigate the crossover regime between the regime of
slow displacement, for which capillary forces control the dynamics of the
invasion process and the geometry of the resulting invasion structure
(capillary fingering), and that of fast displacements, for which viscous
forces are dominant (viscous fingering). By using transparent quasi two-
dimensional porous media as our porous media, optical methods are
used to observe and analyze the local and global displacement geometry
and how it changes with capillary number. This combination of local
and global information allow us to perform upscaling of our data from
the pore scale to the scale of our experimental porous media, which
could be the Darcy scale for a large scale dual-permability model. In
this manner, we are able to relate pressure, saturation, capillary number
and system size.

2. Experimental setup

The presented experiments are all performed on quasi two-dimensional
porous media of various dimensions in length and width (tens of cen-
timeters, as precised below). The thickness of the cells containing this
porous medium is a = 1 mm, and corresponds to the diameter of the
fixed glass beads composing the solid matrix of this porous medium,
which thus consists of a confined mono layer of beads. The porous
medium is initially completely filled with a wetting liquid, which is
displaced by a non-wetting fluid (primary drainage).

The porous medium is made of a random mono layer of glass beads:
Glass beads are poured on the sticky side of a contact paper (see Fig. 1).
When the surface is completely filled with beads, excess beads are
removed, leaving a random mono-layer of beads on the sticky paper.
The sticky paper is attached to a Plexiglas plate that has milled inlet
and outlet channels which are 5 mm wide and 8 mm deep, and have
tubing connections for injection and extraction of water/glycerol from
the system. The distance between the channels L and their length W
limit the size of the system (Fig. 1). The inlet and outlet channels are
cut open, and the model is sealed off at the edges by silicon glue, thus
forming a rectangular porous medium of width W and length L.

When the model is sealed, another sticky paper is placed (glue down)
on top of the glass bead layer. The resulting quasi two-dimensional
porous medium can be filled with a liquid through the channels in the
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Figure 1. Sketch of the experimental rig used for the flow experiments. The two-di-
mensional porous model is clamped to a light-box and kept in place by a pressure
cushion. This pressure cushion can also be used to temperature control the model
by circulating temperature controlled water through it. As fluid invades the model,
pictures are taken from above with a digital camera. The liquid extraction methods
are also indicated on the sketch. The flow experiments are driven by either slowly
imposing a hydrostatic pressure difference over the system by lowering/lifting the
reservoir (shown on a translation stage in the sketch), or by imposing a constant flow
rate by means of a syringe pump or a specially designed gravity pump (Méheust
et al., 2002; Løvoll et al., 2004).

Plexiglas plate (see Fig. 1). The model is then placed (horizontally)
with the beads down and clamped to a frame with an integrated pres-
sure cushion. This pressure cushion ensures that the position of each
bead is fixed and that the porous medium is always only one bead
diameter thick (Fig. 1). The pressure cushion is filled with water. By
circulating temperature controlled water through it, we can control
the temperature in the liquids. The transparent model is placed and
secured on top of a light-box. The porosity φ and intrinsic permeability
κ are measured for all the models. Average values are: φ = 0.62 ± 0.02
and κ = (0.017 ± 0.002) · 10−3 cm2 (≈ 1800 ± 200 Darcy). There is
no semi-permeable membrane between the porous matrix and the inlet
and outlet channels.

The wetting liquid is a either a 80%–20% or a 90%–10% by weight
glycerol–water solution, dyed with 0.1% Negrosine, and the invading
fluid is air in all the reported experiments. At room temperature the
wetting glycerol–water solution has a measured viscosity of µw ≈ 0.050 Pa.s
and 0.165 Pa.s and a density of ρw = 1209 kg.m−3 and 1235 kg.m−3,
respectively. The corresponding parameters for the non-wetting air are
µnw = 1.9 · 10−5 Pa.s and ρnw = 1.20 kg.m−3. The viscous ratio is
thus M = µnw/µw ∼ 10−4, which is low enough to render the pressure
gradient negligible in the non-wetting liquid. The surface tension (γ)
between the two liquids is γ = 6.4 · 10−2 N.m−1 (Vedvik et al., 1998).
Two different liquid mixtures are used in order to tune the viscosity
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contrast of the fluids while maintaining the wetting properties. The
80%–20% glycerol–water solution is used in the experiments presented
in Sec. 3 while the 90%–10% solution is used in the experiments pre-
sented in Sec. 4. In all experiments presented in Sec. 4 the temperature
in the displaced wetting liquid is measured to enable control of the
viscosity of the wetting liquid (and thus, of the capillary number).

The gathered data consists of pressure measurements, pictures of
the displacement structure and the extracted liquid volume. The ab-
solute pressure in the wetting liquid is measured at the outlet channel
(Fig 1) using a Honeywell 26PCA or a Sensor Technics 26PC0100
Flow Through pressure sensor. At the same time, digital images of the
invasion structure are taken at regular intervals. The images are taken
with a Kodak DCS 420 or a Nikon D200 digital camera. The extracted
volume of wetting fluid is also recorded. All the data is collected and
synchronized by a computer.

In this paper results from two model sizes are presented. All the
experiments presented in Sec. 3 are performed on a model with W =
200 mm and L = 350 mm (called the small model). In addition to
this, in Sec. 4 we present results from a set of experiments for which
L = 840 mm and W = 215 mm (called the large model).

Results from two fundamentally different types of experiments are
presented: (i) quasi-static and (ii) constant flow rate experiments. In
the first case, the flow is driven by slowly changing the pressure dif-
ference over the model. This is done by moving an open reservoir of
the wetting liquid, which is connected to the models outlet channel,
vertically with respect to the porous matrix. In the second case a preset
constant flow rate is imposed by means of a syringe pump or a tailored
gravity pump (Méheust et al., 2002; Løvoll et al., 2004) (see Fig. 1).
Since the observed structure is highly dependent on the imposed flow
rate, the latter method has the advantage that invasion happens at a
constant well defined capillary number. This ensures that the length
scales characteristic of the present flow regimes stay constant during
the whole duration of the experiments (Løvoll et al., 2004; Toussaint
et al., 2005).

Details about the building of the models and a detailed description
of the image analysis techniques and how they are used to investigate
the morphology of the invader and the finger-tip position can be found
in (Méheust et al., 2002; Løvoll et al., 2004).
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Figure 2. Snapshots showing the evolution of a quasi static drainage experiment (the
contrast is enhanced in the images). The experiment starts with the porous matrix
saturated with the wetting glycerol–water solution (dark color). The experiment is
driven by slowly increasing the pressure difference over the system. This is done by
means of hydrostatic pressure: in practice, it is done by lowering a reservoir of the
wetting fluid connected to the outlet channel while the inlet channel is open to the
ambient air. The snapshots (a), (b), (c) and (d) are taken at ∼ 23.0, 15.3, 7.7 and
0 h before breakthrough, respectively. The total time from the start of the invasion
to breakthrough was in this case ∼ 48 h. The snapshots are also indicated in the
saturation–pressure curve on Fig. 4.

3. Saturation–Pressure relation: From capillary fingering to

viscous fingering

As mentioned in the previous section, two different types of primary
drainage experiments were performed. In the first set of experiments,
the pressure difference accross the model was controlled, and we per-
formed slow (quasi-static) capillary fingering experiments.

In the second set of experiments, a faster constant flow rate was
imposed to investigate the transition to viscous fingering. This was
done on the same model as the quasistatic experiments, using a syringe
pump. This allowed to perform constant flow rate (Ca) experiments
with the capillary number as tuning parameter.

These two sets of experiments were carried out in the same model
(of dimensions 1 mm×200 mm×350 mm), and will be presented in this
section.

A third set of experiments, also at imposed capillary number, was
performed, in which we analysed optically the invasion structure, simul-
taneously to the retention-saturation dependence. This was done in a
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(1)
(2)
(3)
(4)
(5)
(6)

inlet

Figure 3. Snapshots of a zoom at pore scale of the inlet during the beginning of
the experiment, showing the invasion of a large empty channel (1), (2), followed
by the passing of the drainage front over the edges of the Hele-Shaw cell (3), the
penetration of the drainage front between the parallel plates to reach the first beads
(4), and the invasion of the largest pore necks over a depth of 5-10 times a, the bead
size (5), (6). The snapshots are also indicated in the saturation–pressure curve on
Fig. 4.

larger model, of dimensions 1 mm×840 mm×215 mm. The results of
these experiments and their treatment to obtain a model of the velocity
dependence of the curves will be presented in Sec. 4.

3.1. Quasi-static experiments under imposed pressure head

Fig. 2 shows a selected set of images from a single quasi-static drainage
experiment. The sequence (a)–(d) shows the invader from the start
of invasion up to just before “breakthrough”, i.e. when the invader
reaches the outlet channel. The invading cluster is typical of capillary
fingering (Lenormand and Zarcone, 1985), it spans the whole system
width and leaves behind trapped droplets of wetting fluid, of various
sizes (only limited by the system size). The snapshots in Fig. 2 are also
referred to in the corresponding saturation–pressure curve in Fig. 4. In
this experiment the pressure drop over the system was changed slowly
by keeping the atmospheric pressure at the inlet, while slowly lowering
an open reservoir connected to the model outlet by tubes fully filled
with the lowly compressible wetting fluid: this imposes a pressure drop
corresponding to the hydrostatic pressure drop in the outlet tube (the
vertically movable reservoir is indicated on Fig. 1). In order to minimize
any additional pressure drop in the system due to fluid friction in the
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viscous fluid (dynamic effects), the reservoir is displaced vertically by
small increments, and kept at rest between two successive increments
until the fluids are not flowing anymore. At this point, the pressure
at the setup outlet is constant and related to the atmospheric pres-
sure Pa and to the altitude of the reservoir (referenced with respect
to the outlet’s altitude) through the law of hydrostatic pressure. As
the setup inlet is open to the air, the pressure is Pa there as well,
so the deviation of the pressure at the outlet from the atmostpheric
pressure also happens to be the pressure head between the setup inlet
and outlet. Since the viscosity of the air is negligible with respect to
that of the liquid, that pressure head is also the sum of the capillary
pressure and of the pressure head through the viscous liquid. This way
of driving the system is what we call “quasi-static”. As described in
the previous section, we measure the amount of liquid extracted from
the model and the pressure at the setup outlet (gauge pressure sensor).
From these mass measurements the saturation of the non-wetting liquid
(Snw) is calculated as a function of time. By combining the calculated
saturation with pressure measurements, a standard saturation–pressure
curve is obtained. Pressure–saturation data from the experiment shown
in Fig. 2 are plotted in Fig. 4.

As can be seen in Fig. 4, the pressure measurements exhibit notable
fluctuations during the drainage process.

The sudden (random) jumps seen around the plateau corresponding
to the hydrostatic pressures imposed by the reservoir happen during
the dynamic stages, that is just after each displacement increment of
the reservoir and before the flow has ceased, as the fluid interface (in-
vasion front) penetrates new pores. During these dynamic stages, the
measured pressure is different from that imposed at the setup outlet
by the reservoir under static conditions. In order to invade a pore,
the capillary pressure has to exceed the capillary threshold pressure
for that pore throat. As this happens the capillary pressure decreases
rapidly, the pore is filled with the invading fluid and the fluid interface
in the surrounding pores retracts in order to adjust to the new capillary
pressure. The size of these pressure jumps is random since the capillary
thresholds are randomly distributed (Måløy et al., 1992; Furuberg
et al., 1996). All pore necks in the system have an associated capillary
threshold pressure. These threshold pressures are determined by the
local pore geometry, the surface tension between the fluids, and the
local wettability. So for a given porous medium and fluid pair the
thresholds will have a given distribution. During drainage a subset
of this distribution is probed before the invader percolates the sys-
tem (Auradou et al., 1999; Schmittbuhl et al., 2000; Auradou et al.,
2003). If the experiment is driven by slowly increasing the pressure
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Figure 4. Pressure–saturation (retention) curve from a quasi-static primary drainage
experiment.The plotted pressure is the pressure difference over the model (from
invasion front to outlet channel). The pressure was measured with a single gauge
sensor in the outlet channel where the pressure recorded before the invasion process
starts is used as reference. The plotted data is taken from the experiment shown in
Fig. 2, the corresponding images are indicated by red crosses on the graph (a)–(d)
from left to right. The subplot indicates the modified pressure and saturation, with
a reference taken when the interface between the two fluids reaches the boundary of
the granular medium. The two curves plotted are Brooks-Corey (dashed) and Van
Genuchten (dot-dashed) models fitted on the data in the subplot – and reported
on the main figure. This saturation-pressure curve seems consistent with a behavior
typical of soil mechanics.

difference between the air and the liquid phase over the model, the
invasion process starts once the pressure has reached the lowest pressure
in the capillary threshold pressure distribution. For the data plotted
in Fig. 4 this corresponds to the steep increase in pressure as air start
invading the system. As the pressure is slowly increased further a larger
portion of the threshold distribution becomes available for invasion,
and while the pressure slowly changes, the non-wetting fluid invades
the system and the saturation of non-wetting fluid increases, until the
air percolates the system at breakthrough. Therefore, for “quasi-static”
experiments, relatively large changes in saturation occur for small pres-
sure increases once the pressure is established at values well inside the
capillary threshold distribution.
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For the first part of the pressure rise shown in Fig. 4, the initial pres-
sure rise in the beginning of the invasion has a somewhat different shape
from the one observed in similar tests carried out on three-dimensional
soils. The reason for this comes from the particular shape of the inlet
in these Hele-Shaw experiments. The initial invasion can be followed
optically, and the points (1-6) in Fig. 4 correspond to the snapshots of
the inlet displayed in Fig. 3. As seen there, the large channel in front
of the Hele Shaw cell is progressively invaded from (1) to (2), and as
it thins regularly, the capillary pressure rises. Next, the pressure rises
from (2) to (3), while the meniscus between the two fluids is attached
to the edges of the Hele Shaw cell. The associated pressure rise can
be understood from the Young-Laplace law, ∆P = γ(1/r⊥ + 1/r‖)
for the capillary pressure between the plates. Here r‖ is the infinite
inplane radius of curvature and r⊥ is a gradually decreasing radius
in the direction normal to the plates. Once the contact angle of the
interface with the parallel plates reaches a characteristic value, the
meniscus penetrates between the two plates. On the inlet side of these
cells, no beads are present, and an empty buffer is then invaded, up
to point (4). At point (4), the interface reaches the first grains, and
the average inplane radius of curvature r‖ starts to decrease as the
meniscus gets pinned over the first grains. Afterwards, the first pores
start to be invaded, going through (5), up to state (6) where a plateau
is reached. The variable porosity that can be considered as analog to
some soils is the one between the grains, and not the part associated
to the shape of the inlet channel and the empty buffer between two
parallel plates at the entrance of the Hele-Shaw cell. Hence, the initial
upward curvature in Fig. 4 can be seen as an artifact related to the
inlet shape, and point (4) can be considered as a reference to compare
this saturation–pressure relationship to standard tests on soils.

Considering the capillary pressure drop associated to the out-of-
plane curvature γ/r⊥ as constant through the invasion process after
point (4), we are interested in the variable part γ/r‖ as the inva-
sion front enters through the beads. To estimate this part, we define
(4) as the new reference, and estimate the constant shift as γ/r⊥ =
∆P(4) = 201 Pa. Defining a shifted pressure ∆P ′ = ∆P − ∆P(4),
and a saturation with respect to the state of the cell at point (4),
S′

nw = (Snw − Snw(4))/(1 − Snw(4)), we obtain the curve shown in the
subplot of Fig. 4.

This curve, obtained in a quasi-static test in a Hele-Shaw cell filled
with a monolayer of beads, looks very similar to other pressure-saturation
curves obtained during retention tests in three dimensional and non
transparent setups in hydrology. Interestingly, one notes that the first
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largest pores are already invaded when the pressure reaches an apparent
threshold, in (a) as seen in Fig. 3.

One can also directly compare it to standard models from the hy-
drology literature: denoting the effective water saturation as

Se =
Sw − Swr

1 − Swr
=

1 − Snw − Swr

1 − Swr
,

where Swr is the residual water saturation, the Brooks-Corey model (Brooks
and Corey, 1964) is normally written as

pc = pd S1/λ
e ,

where pd is the air entry pressure. A least-square fit of the reduced
data to this model is shown in Fig. 4, and provided the following fit
parameters: pd = 275 Pa, λ = 3.1, and Swr = 0. Typically, for soils, λ
stands between 0.2 and 3, the highest values corresponding to highly
non-uniform grain-size distribution. The fact that we obtain a value
close to the higher naturally occurring values, is consistent with the
fact that the nearest neighbor distance, in such layers of beads put at
random on a sticky plate, is certainly highly non-uniform compared to
a three-dimensional packing of grains stacked under gravity. Given the
value of the interfacial tension γ, the entrance pressure corresponds to
a minimal curvature in the largest pore necks of r‖ = γ/pd = 0.25 mm,
which is of the order of a quarter of bead size: this is consistent with
the expected order of magnitude for such a packing. The fact that Swr

is obtained at its smallest possible value, 0, can be explained by the
fact that apart from the large fluctuations, no trend of any upward
curvature of the pressure-saturation curve can be seen in Fig. 4.

Another common model for such curves in the Van Genuchten re-
tention function (Van Genuchten, 1980),

pc =
1

αvg

(

S
n

1−n
e − 1

)
1
n

A fit to this model is shown as the dash-dotted curve in Fig. 4, and
leads to Van Genuchten parameters αvg = 0.00029 Pa−1, Swr = 1, and
n = 9.9. The value of αvg obtained is consistent with that of a soil,
the value of n is a few times larger than the one usually obtained for
three-dimensional natural soils. This can be presumably attributed to
differences in the packing, and notably the fact that the transition from
the steeply growing part of the curve, up to point (a), into a plateau
with fluctuations, is quicker than for many natural three-dimensional
soils presumably due to the fact that only one diameter of beads is
represented in the packing.
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From a general point of view, it is interesting to note that this two
dimensional medium presents a quasi-static pressure-saturation curve
(and model parameters) somewhat similar to what could be expected
for its three dimensional counterpart, and presumably represents well
the processes at play in tests on opaque three dimensional media.
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∆P
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)

Ca = 0.010
Ca = 0.039
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Figure 5. Saturation–pressure curves from three primary drainage experiments on
the small model, driven at constant flow rate (constant Ca) by a syringe pump.
Snw is the saturation of the system in the non-wetting fluid (air), related to the
saturation in wetting fluid (water-glycerol) Sw by Snw = 1−Sw. The total duration
of the drainage experiments are ∼ 2.4 h, ∼ 10 min. and ∼ 3 min for Ca = 0.010,
0.039 and 0.078, respectively.

3.2. Experiments under finite imposed flowrate

As mentioned earlier, we have also driven the system at constant capil-
lary number by means of a syringe pump and we now take a closer look
at the results obtained from those experiments. In this case the pressure
imposed over the model is not controlled directly, instead a constant
flow rate is imposed, and the pressure over the model will at any time
be the pressure needed to maintain the flow rate. Fig. 5 shows the
saturation–pressure data curve for syringe pump driven experiments at
different imposed flow rates. The black curve in Fig. 5 shows a slowly
driven experiment, at a low capillary number of 0.01. It shows the
same initial pressure buildup in the beginning of the experiment as
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for the “quasi-static” experiment (Fig. 4). When the average capillary
threshold pressure is reached the pressure just fluctuates more strongly
around this constant value during the whole drainage process. The two
other curves shown in Fig. 5 present similar results for faster syringe
pump driven experiments. These curves still show the random pressure
fluctuations caused by the variation of capillary pressure thresholds.
Additionally, compared to quasistatic drainage curves, the slope of the
drainage curve is “reversed” by the boundary conditions of imposed
flux: after the initial pressure buildup, the pressure is steadily decreas-
ing while the air saturation increases. This feature was also observed
with different boundary conditions in some numerical studies of dy-
namic fingering (Dahle et al., 2005). As already known and shown
in other studies (Hassanizadeh et al., 2002; Dahle et al., 2005),
we observe here that for a given porous medium there is no one-to-
one relation between the saturation and the pressure over the system.
Boundary conditions and dynamic effects have a significant impact on
the pressure vs. saturation relation. In the next section we shall look
at dynamic effects more closely.

4. Relating capillary number, saturation, pressure and

system size

In order to relate capillary number, saturation, pressure and system size
we now turn to the results from experiments carried out under variable
withdrawal speeds on a slightly larger model system than the one de-
scribed in the previous section, of dimensions 1mm×215mm×840mm.

Dynamic capillary pressure as measured in retention experiments (Has-
sanizadeh et al., 2002) is often defined as the total pressure difference
over the porous medium (∆P ), or some spatial average of the pressure
over one of the present phases (Dahle et al., 2005) (see discussion
in Sec. 5). The total pressure difference is a combination of capillary
pressure along the invasion front (Pc) and the pressure head caused by
viscous effects (∆Pv) (Washburn, 1921)

∆P = Pc + ∆Pv (4)

In drainage the capillary pressure is essentially unaffected by the speed
of the flow and system size (Méheust et al., 2002), except in details,
since the pores invaded are not exactly the same (this is however not the
case in fast imbibition, see (Weitz et al., 1987)). The order of magnitude
of this capillary pressure does not change in time and as demonstrated
in Sec. 3 it can be treated as randomly fluctuating around a well defined
average value. However, the viscous part (∆Pv) is dependent on finite
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Figure 6. Images of experiments taken at different withdrawal rates (expressed by
the capillary numbers) at the point in time where they have the same (viscous)
pressure difference from the front of the invader to the outlet channel. The viscous
pressure difference is P ∼ 490 Pa in all the pictures. Note that the invasion structure
is initiated in the center of the flow cell, this is done by creating a small “notch” in
the porous medium at the center of the inlet to initiate the viscous finger instability
here.

size effects and invasion speed. In the following, the reported measured
pressure (P ) is therefore equal to the viscous pressure drop:

P = ∆Pv (5)

It is obtained from our measurements by using the pressure just before
break through (tbt) as reference null pressure P (tbt) ≡ 0.

Earlier studies (Løvoll et al., 2004; Toussaint et al., 2005) have
demonstrated that for viscous fingering with high viscous contrast the
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Figure 7. Pressure (see Eq. 5) as a function of the non-wetting fluid saturation
(Snw) for some experiments on the large model. The initial pressure buildup is due
to inertia in the liquid which is accelerated from being at rest up to the desired finite
speed. The effect is explained in Appendix A where we also show how to correct for
this effect in the pressure data.

invasion process is limited to a region close to the tip of the most
advanced finger (Fig. 6). These studies have also shown that for a
given (constant) capillary number, the propagation speed of the most
advanced finger tip was fairly constant. It is therefore natural to assume
that the viscous pressure drop over the system is dependent on both the
capillary number and the finger tip position. The relation between the
viscous pressure drop, the flow rate (expressed by the capillary number)
and the finger tip position is illustrated in Fig. 6, where snapshots of the
invasion structure are shown for four different drainage experiments.
The experiments are all performed at constant flow rate and the snap-
shots are such that the viscous pressure drop across the cell is the same
in all snapshots. These pictures do also illustrate how the saturation of
the non-wetting liquid changes with capillary number. As the invasion
rate increases, the invasion structure gets thinner, which again leads
to lower saturation of the invading non-wetting liquid. The pressure
vs. air-saturation (Snw) plots for these drainage experiments are shown
in Fig. 7. After the initial pressure buildup, these experiments show
the same behavior as the two “fast” syringe driven experiments in the
previous section (Fig. 5).
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One might think that it is just a question of keeping the flow rate
low enough to ensure that the experiment will be in flow conditions
corresponding to the capillary regime. But if the system is big enough,
viscous effects will always dominate the problem at larger length scales.
The crossover length scale such that the viscous pressure drops between
two points separated by a distance larger than this scale dominate over
capillary threshold fluctuations, is given by Eq. (3), lc = a/Ca. Above
this length scale, the displacement dynamics is in the viscous fingering
regime and it will take place in narrow channels and branched loopless
structures, as shown in Fig. 6 (Løvoll et al., 2004; Toussaint et al.,
2005). At scales below this, capillary fluctuations dominate the dynam-
ics, and the resulting structure is characteristic of the capillary fingering
regime, with droplets of wetting fluid remaining trapped in loops of
the invading nonwetting fluid. Looking at Fig. 6, four experiments at
different speeds and at the same P , it is obvious that the viscous
pressure drop is related to the position of the most advanced finger
and the capillary number. Earlier studies have also shown that the
invasion structure is screened by the advancing invasion front and that
the propagation speed of the invasion front is fairly constant (Løvoll
et al., 2004). The process is thus stationary in a referential attached to
the advancing finger tip. All the invasion happens in a zone close to this
tip. As was obtained in a detailed analysis of the pressure field, mea-
suring at several points around the invader in each experiment (Løvoll
et al., 2004), the pressure is roughly constant behind the finger tip,
and the viscous pressure gradient in front of the invasion structure is
essentially constant. The viscous pressure is thus (to the first order) a
linear function of the distance from the outlet to the most advanced
finger:

P = ∇P (L − xtip) (6)

where ∇P is the average viscous pressure gradient and xtip is the posi-
tion along the flow direction of the most advanced fingertip (indicated
on Fig. 6). ∇P can be approximated by Darcy’s law:

∇P =
µwvf

κ
(7)

where µw is the viscosity of the wetting fluid, vf = Q/A is the specific
discharge or Darcy-velocity, κ is the intrinsic permeability of the porous
medium, Q is the volumetric flow rate, and A is the cross section area
of the model. Consequently, we can write the pressure change caused
by viscosity effects as:

P =
µvf

κ
(L − xtip) =

γCa

a2
(L − xtip), (8)

tipm-final-grunde-et-al2.tex; 14/02/2010; 10:23; p.18



19

where we have used the expression of the capillary number, Eq. (1).
This allows to express the ratio of xtip to the system length L as a
function of pressure and capillary number:

1 −
xtip

L
=

a2

γLCa
P (9)

where we recall that P is the measured viscous pressure drop over the
system (see Eq. (5)).

This relation is demonstrated in Fig. 8 (a), where the measured
pressure over the model, reduced by a scaling factor that is propor-
tional to the capillary number is plotted as a function of the reduced
finger tip position xtip/L for a range of capillary numbers. The pressure
drop across the model can also be corrected for the inertia of the fluid
during the initial acceleration. In Appendix A we show how these initial
inertial effects lead to a multiplicative factor (1 − e−t/T ) for the time
dependant pressure, where T is the time characteristic of the initial
pressure buildup. A way to correct for these inertial effects is then,
after the determination of T by a least square fit, to represent the cor-
rected pressure P/(1− e−t/T ) rather than the measured pressure. This
is shown in Fig. 8 (b). Based on the argument above, we introduce the
dimensionless reduced pressure related to the measured pressure, which
should be equal to the viscous pressure drop in the model, through
Eq. (9):

P ∗ ≡ P
a2

γLCa
(1 − e−t/T )−1 = 1 −

xtip

L
(10)

Using our knowledge of the morphology of the invading cluster in the
transition from viscous- to capillary-fingering (Løvoll et al., 2004; Tou-
ssaint et al., 2005), a relation for the non-wetting liquid saturation
(Snw) as a function of finger tip position xtip, capillary number (Ca)
and the width of the system W can also be derived. This is done by
counting the number of invaded pores Ninv as a function of xtip/L.
Earlier studies (Løvoll et al., 2004; Toussaint et al., 2005) have shown
that the invasion typically takes place in a limited region in the center of
the channel. The width of this region is λW , where W is the width of the
system and λ ≃ 0.4. Above this scale, we have a linear channel where
the displacement structure could be considered homogeneous. Inside
this channel (of width λW ), two flow regimes are present depending on
the length scale considered. At large scales (between λW and lc) the
flow structure is that of viscous fingering, which is a treelike structure
with branches and no loops. The viscous fingering structure is a fractal
with a fractal dimension Dv ≃ 1.53 (Toussaint et al., 2005). At smaller
scales capillary forces dominates the flow process and the displace-
ment structure is that of capillary fingering. Capillary fingering is also
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Figure 8. (a) Data collapse of the pressure drop as function of xtip/L for various
capillary numbers. The inset shows the measured pressure across the model prior
to rescaling. (b) Scaled pressure data where the initial pressure buildup is corrected
with the method outlined in Appendix A using T = 114 s (See Appendix A for
details).
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Figure 9. Sketch of the relevant length scales superimposed on top of an image
from one of the invasion experiments at constant viscous pressure gradient near
break through. The width W of the channel is 215 mm, the length L is 850 mm
and the capillary number Ca = 0.079. In addition to the width W and length L
of the model, the “occupation width” λW and the cutoff length scale for capillary
fingering (lc = a/Ca) are indicated.

fractal, with fractal dimension Dc ≃ 1.83 (Wilkinson and Willemsen,
1983; Lenormand and Zarcone, 1985). The relevant length scales in the
problem are sketched in Fig. 9. The following argument is thus valid
when:

a ≪
a

Ca
= lc ≪ λW (11)

When the most advanced finger tip is at xtip, the invasion has
taken place in a channel of area λWxtip. This channel is composed
of xtip/(λW ) square zones of linear size λW . In each of these zones the
invading viscous fingering structure goes through (λWCa/a)Dv square
boxes of linear size a/Ca. And in each such box, the invader occupies
on average [(a/Ca)/(αa)]Dc = (αCa)−Dc pores of linear size αa, with α
a geometrical pre factor, of order of magnitude 1 (indicating that the
pore volume is not exactly a3 but rather (αa)3). The total number of
invaded pores is thus:

Ninv(xtip) =
xtip

λW

(

λWCa

a

)Dv

(αCa)−Dc

=
xtip(λW )Dv−1

aDv
α−DcCaDv−Dc (12)

The total volume accessible to the fluid is WLaφ, where φ is the
porosity. The average pore volume is (αa)3. The saturation of the
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non-wetting fluid, Snw, can thus be written as:

Snw =
Ninv(αa)3

WLaφ

=
xtip

L

a2−Dv

φ

(λW )Dv−1

W
α(3−Dc)CaDv−Dc (13)

This relation can be inverted to obtain a dimensionless reduced
saturation S∗ which is a reduced variable of the tip position, xtip/L.
It relates to the dimensional saturation of the wetting fluid, Snw ,
according to:

S∗ ≡
xtip

L
= Snwα(Dc−3) φ

λDv−1

(

W

a

)2−Dv

CaDc−Dv (14)

Based on Eq. (10) and (14) we predict that P ∗ and S∗ are related
through the relation:

P ∗ = 1 − S∗ (15)

This is indeed the case to a large extent, as shown in Fig. 10. The
satisfactory character of this data collapse for the reduced pressure
drop versus reduced saturation at various speeds can be seen when
comparing Fig. 10 to the raw data presented in Fig. 7.

In addition, the above arguments can be applied to the particular
state P ∗ = 0, i.e. at breakthrough, when the invading nonwetting fluid
reaches the outlet, at xtip = L. This marks the end of the experiments,
when the nonwetting viscous fluid pushed from one side of the system
would exit the sample volume. The saturation reached at this time gives
the final saturation which can be retrieved before the invader reaches
the outlet, and thus gives an estimate of the efficiency of the invasion
process before breakthrough. This point corresponds to the prediction
S∗ = 1, i.e. according to Eq. (14), to a final non wetting saturation Snw

at breakthrough

Snw(tbt) = α(3−Dc) λ
Dv−1

φ

(

a

W

)2−Dv

CaDv−Dc . (16)

and a residual saturation 1 − Snw that reads accordingly. This predic-
tion for the final saturation as a function of the speed of the invasion
process Ca – is shown in the subplot of Fig. 10 as a dashed curve.
The measurements of the final invader saturation at breakthrough for
experiments carried out at various capillary numbers, represented as
the crosses, match well with this prediction.

tipm-final-grunde-et-al2.tex; 14/02/2010; 10:23; p.22



23

0 0.2 0.4 0.6 0.8 1 1.2

S
*

0

0.25

0.5

0.75

1

1.25

P*

Ca = 0.009
Ca = 0.022
Ca = 0.029
Ca = 0.033
Ca = 0.054
Ca = 0.058
Ca = 0.060
Ca = 0.062
Ca = 0.079
Ca = 0.110
P

*
 = 1 - S

*

0 0.1 0.2
Ca

0

0.1

0.2

S nw
(t

bt
)

Figure 10. Data collapse of saturation versus pressure curves from experiments per-
formed at capillary numbers between 9 ·10−3 and 1.1 ·10−1 . The collapse is obtained
by plotting P ∗ as a function of S∗. The collapse is consistent with the prediction
in Eq. (15); it is indicated by the dashed line. Compare this to the original data
shown in Fig. 7. The only “free parameter” in the data collapse is the geometrical
pre-factor α, α = 0.75 is used in the collapse. The inset shows the saturation of the
non-wetting fluid (Snw) at breakthrough time (tbt) as a function of the capillary
number. The dashed line is the breakthrough saturation predicted by Eq. (16).

5. Discussion

The theory leading to the scaling relation between pressure and satu-
ration in Eq. (15) is valid only for a limited range of capillary numbers,
for high viscous contrast and for systems without gravity. The limits in
capillary numbers are given in Eq. (11). In practice we believe that the
upper limit in capillary number is Ca ≈ 1/10 which implies that our
largest reported capillary number Ca = 0.11 is close to this limit. For
higher capillary numbers, the width of the viscous fingers is close to the
pore scale and there is no capillary fingering structure at smaller scales.
This would imply that the saturation is independent of the capillary
number at higher flow rates, and the saturation at breakthrough is
constant for all Ca higher than the ones satisfying Eq. (11). This ob-
servation is also consistent with the measured break through saturation
shown in the inset of Fig. 10 where the saturation level seems to be
fairly constant for capillary numbers above ∼ 0.1. At the other end
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of the scale, on the other hand, it is the size of the system that sets
the limit. When the capillary number is low enough for the crossover
length scale to reach the system width (lc ≈ λW ) the capillary fingering
structure fills the accessible channel width (see Fig. 2) and there is no
scaling crossover from capillary to viscous fingering. And as for the high
capillary number regime, it is expected that a constant breakthrough
saturation will be obtained. In our case this corresponds to Ca ≈ 1/100
which is of the order of the smallest presented capillary number.

It should also be noted that the invading cluster is fractal for all
capillary numbers and the actual saturation will therefore depend on
the width of the system W . Another important observation is that for
finite flow rates the system size determines the importance of viscous
effects (dynamic effects). A given capillary number Ca will result in
a crossover length scale lc = a/Ca. Above this length scale viscous
effects will dominate the problem. This observation raises a question
on the general validity of the representative elementary volume (REV)
assumption commonly used in Darcy scale modeling.

We would also like to point out that there is only one “free fit
parameter” in our saturation scaling relation (13), namely the geo-
metrical pore size factor α. In addition this parameter has a precise
physical meaning and the found value, of order of magnitude 1, is in
the expected range.

The data collapse of experimental measurements presented in Fig. 10
displays naturally a certain dispersion. The first observation is that no
systematic dependence on velocity of the deviation from the proposed
theoretical behavior P ∗ = 1 − S∗ is seen: this deviation seems to arise
from the inherent noise resulting from the disordered nature of our ex-
perimental systems (with a distribution of pore sizes), but the proposed
model seems to capture most of the behavior of the saturation–pressure
relation at various speeds. The quality of this collapse becomes evident
when it is compared to the raw saturation–pressure data shown in
Fig. 7. Fig. 8 shows that the collapse of the pressure data is quite
good, so the main scatter in the collapse of Fig. 10 results from the
saturation data. Even if there is scatter in the saturation data, we
will claim that no systematic trend is visible. The experiments are
carried out on disordered media, and the morphology of the invasion
structures are statistically fractals. On such a small systems, noise is
expected in the experimental data. For these model systems there are
also boundary effects at the inlet and outlet. The arguments leading to
Eq. (13) assume that the process is stationary, and they do not take
boundary effects into account. If one looks at Fig. 6 and 9 it is evident
that there are boundary effects near the inlet channel and that the
saturation there is different from the saturation further into the model.
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In addition to this, the saturation in the frontal region is different
from the stationary part left behind the advancing front, so when the
invasion front reaches the outlet channel, the saturation will be lower
in the vicinity of that channel than the saturation away from it. Earlier
studies (Løvoll et al., 2004; Toussaint et al., 2005) have shown that
the size of the active frontal region is of the order of the system width.
At break through there is therefore a region at a distance ∝ W where
the saturation is lower than in the “completely invaded” parts of the
system. It is therefore crucial that the system is large enough to average
out these fluctuations and to minimize end effect. So, when designing
such an experiment, we would suggest that one ensures that L ≥ 4W
and in addition the system has to be wide enough so that Eq. (11)
allow for a sufficiently large range of available capillary numbers.

As said earlier, the pressure (or dynamic capillary pressure) is of-
ten measured between two points, one in one phase, the other in the
other one. Commonly, this is done practically at the inlet and outlet.
However, some authors (Hassanizadeh et al., 2002; Dahle et al., 2005)
define the dynamic capillary pressure as being the difference between
the (spatial) average pressure in one phase, and the average pressure
in the other one. Although this definition is easy to use in a numerical
system, it is difficult to use in practice in an experimental system, where
the pressure in the two phases is normally known only at a limited set of
measurement points. In the present system, nonetheless, the knowledge
gained on the pressure field from several measures and models (Løvoll
et al., 2004; Toussaint et al., 2005) leads to a possibility relatively easy
computation of such spatial average, if desired: we have measured that
the pressure in the wetting liquid is roughly spatially linearly decreasing
in front of the invading tip, and roughly constant (equal to Pc) on the
sides behind the tip - this is an approximation, see (Løvoll et al.,
2004) for details of the pressure modeled and measured around the air
fingers. The pressure in the continuous air phase is roughly constant.
Consequently, the spatial average of the air pressure is Patm, and the
average pressure in the wetting phase is dominated by the pressure
ahead of the tip, i.e. the term

∫ L

xtip

dx

(

Patm + Pc + P ·
x − xtip

L − xtip

)

/

(

∫ L

xtip

dx

)

= Patm + Pc + P/2.

Here, this difference between the average pressures in both phases
average should be around

P/2 + Pc,

when the measured total variation across the cell is

∆P = P + Pc :
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Both should be qualitatively the same in terms of dependence on the
flow speed, system size, etc. As with the measurements presented here,
the “dynamic capillary pressure” is expected to be system size depen-
dent. Whenever there is flow, there are dynamic effects present, and the
pressure gradient is a priori known to be non zero (Ca 6= 0 ⇔ ∇P 6= 0).
In our case, the invading structure is screened from the viscous pressure
field by the active zone at and near the most advanced finger (Løvoll
et al., 2004). This implies that in the frontal region there is a spatial
trend in the capillary pressure along the fingers: the capillary pressure
in the fingertips (where invasion is happening ) is larger than further
back. This has been reported in earlier studies (Løvoll et al., 2004)
(using pressure sensors inside the model) and the effect is also present
in the classic Saffman–Taylor solution (Saffman and Taylor, 1958).

It is also interesting to note that the models proposed by the authors
of Refs. (Hassanizadeh et al., 2002; Dahle et al., 2005) include a
linear dependency of the time derivative of the saturation (∂S/∂t) in
the “dynamic capillary pressure” function. It is important to mention
that for a system of volume V and porosity φ, ∂S/∂t = Qφ/V , so that
∂S/∂t ∝ Ca. This effect, reported by (Hassanizadeh et al., 2002; Dahle
et al., 2005), is indeed a viscous effect (Niessner and Hassanizadeh,
2008), and for high viscous contrasts the proportionality factor has
been derived in Sec. 4.

In the scaling theory developed in Sec. 4, the invader morphology
at small scales is used to predict “Darcy scale” behaviour. We there-
fore believe that this type of argument could be very useful for Darcy
scale modeling. Our results also demonstrate that for flow conditions
where the morphology of the invader is fractal, the saturation–pressure
relation is system size dependent. So in a sense there is no such thing
as “continuum scale” in fractal systems. Our approach is thus rather a
way to understand the problem at the relevant scales than a model for
large scale continuum modeling. In real reservoir modeling one also has
to consider effects and problems not included in our theory. At larger
length scales, inhomogeneities in the porous media are expected and
will be important. This implies that the relevant length scales will be
different in the different parts of the system. The invasion speed and
thus the capillary number can vary in space and time. In addition, in
three dimensional systems, gravity and fluid density differences can be
very important. When dealing with systems where gravity is important,
viscous effects will still be important (Hill, 1952; Saffman and Taylor,
1958; Méheust et al., 2002) and in this class of problems also the ratio
of the relevant forces can be used to predict the relevant length scales of
the problem (Wilkinson, 1984; Birovljev et al., 1991; Méheust et al.,
2002). Another limitation in our study is the high viscous contrast
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between the phases. In this respect we would like to point out that
there will generally be a high viscous contrast in systems where one of
the phases is a gas, and that similar arguments have been successfully
applied to systems where the viscous contrast were smaller (Frette
et al., 1997; Aker et al., 2000).

Another thing to be aware of is that in contrast to models used
to describe standard water retention tests in soil samples, there are
no semipermeable membranes at the inlet- and outlet-channel in the
models used in this study. This makes it impossible to statically increase
the pressure over the sample in order to reach the low water saturations
commonly seen in published retention curves (Leverett, 1941; Brooks
and Corey, 1964; Van Genuchten, 1980; Lenhard et al., 1993; Has-
sanizadeh et al., 2002). This choice for our models was motivated by
the idea that the lack of semi permeable membranes has the advantage
of being more “realistic”, in the sense that in real reservoir systems
small volumes are not restricted by semi permeable membranes. On
the contrary, when using semi permeable membranes the system can
be forced into a state which is “out of reach” in real systems where the
application of a large pressure somewhere near a given sample volume
would lead the non-wetting liquid to be forced into the surrounding
porous medium, without further decreasing the water saturation in the
sample volume in question.

6. Concluding remarks

Results from drainage experiments on quasi-two-dimensional porous
models have been reported. The models are transparent such that the
displacement process and structure can be monitored in space and time.
This is done in addition to monitoring the global pressure difference
over the system and the amount of extracted liquid. The reduced data
is used to obtain standard pressure-saturation curves.

By using different ways of driving the invasion process we can con-
trol the dynamic component of the pressure head and explain the
experimentally observed dynamic effects by relating them to theoretical
arguments. Indeed, by combining detailed information on the displace-
ment structure with global measurements of pressure and saturation,
we have derived a scaling relation relating pressure, saturation, system
size and capillary number Ca. And by applying this pressure-saturation
scaling relation, curves for a range of capillary numbers have been
collapsed onto a system size- and Ca- independent master capillary
curve. We believe that this study can have a significant impact on the
understanding of the impact of dynamic effects on retention curves,
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and it is our hope that that the size dependence could be applied in
reservoir scale modeling.
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Appendix

A. Pressure adjustments

In order to avoid pressure fluctuations caused by uneven motion of the
syringe pump, a specially designed “gravity pump” (Méheust et al.,
2002) was utilized in the fingering experiments. When this pump is
used to drive the system at a constant flow rate, there is an initial
transient phase with pressure buildup before the liquid in the model is
accelerated up to the desired speed and flow reaches the desired rate,
causing the displacement to become stationary. This is because the
liquid in the porous medium is at rest when the external pressure is
turned on at the start of the experiment (t = 0) and inertial effects
will impose a time scale for this velocity and pressure buildup. If the
flow is driven with an imposed hydrostatic pressure ρgH, where H is
the height difference between the model and the reservoir the liquid is
flowing into, the equation of motion for the liquid in the model can be
written as:

ρLAφ
dv

dt
= ρgHA − vR (17)

where R is the (tunable) resistance in the tubing between the porous
medium and the outlet reservoir used to set the volumetric flux in ex-
periments. If one neglects the permeability of the porous medium1 and

1 This is the same as assuming that the total resistance to flow is dominated by
the tube and valve in “the gravity pump”.
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solves this for the filtration velocity v(t) with the boundary conditions
v(0) = 0 and v(t ≫ T ) = vf, one gets:

v(t) =
gHρA

R
(1 − e

− tR
ρLAφ ) (18)

= vf(1 − e−
t
T ) (19)

where T = LAφρ/R is a system specific relaxation time. We can also
express the filtration velocity as a function of the macroscopic pressure
gradient, using Darcy’s law, and an effective pressure gradient set by
the viscous pressure drop exerted over the distance between the most
advanced position of the invasion structure (finger tip) at x = xtip and
the outlet of the system at x = L:

v = −
κ

µw
∇P (20)

≃
κ

µw

P

L − xtip
(21)

If we now combine this Darcy’s law, Eq. (19) and the definition of the
capillary number (1), the following equation should give the pressure
P (t) as a function of time:

P (t) =
µw

κ
vf(1 − e−

t
T )(L − xtip) (22)

≈
Caγ

a2
(1 − e−

t
T )(L − vtipt) (23)

where the speed of the advancing finger tip vtip is assumed constant.
The latter equation (23) can then be used to correct for the initial
pressure buildup when the pressure data is rescaled and collapsed. In
practice this is done by fitting Eq. (23) to the measured P (t) with T and
vtip as fitting parameters. If T is furthermore assumed to only weakly
depend on the capillary number, we can get a single characteristic T
by averaging the calculated T -values. This averaged value is then used
to correct for the initial pressure buildup, see Fig. 8 and 10 where
T = 114 s is used to collapse the pressure data.
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Måløy, K. J., J. Feder, and T. Jøssang: 1985, ‘Viscous fingering fractals in porous
media’. Physical Review Letters 55, 2688–2691.
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