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We analyze the granular Rayleigh-Taylor instability of densely packed grains immersed in a com-
pressible or an incompressible fluid using numerical simulations and two types of experiments. The
simulations are based on a 2d (two dimensional) molecular dynamics model and the experiments
have been carried out in systems of grains immersed in water/glycerol (incompressible fluid) and in
air (compressible fluid). The variation of the interstitial fluid is shown to generate different dynam-
ical patterns and mixing properties of the granular systems. The results have been quantified using
2d autocorrelation functions, the power spectrum of the velocity field and velocity field histograms.
Excellent agreement is found between the numerical simulations and the experiments.

I. INTRODUCTION

The dynamics of particles immersed in fluids has been
studied in a wide range of systems such as fluidized beds
[1], sedimentation [2–4], mixing problems and granular
flows. Many of the studied systems have important in-
dustrial applications as well as natural equivalents in a
wide range of geological systems such as land slide, ero-
sion, hydro-fracturing [5], and avalanches [6].
The granular Rayleigh-Taylor instability has been stud-
ied recently using numerical as well as experimental
methods for the case of air [7, 8] and for the case of
grains falling in a highly viscous fluid [9–11].
Typically, experiments are conducted in closed rectan-
gular Hele-Shaw cells where a dense granular layer falls
through a gap filled with a fluid. In general, the falling
layer separates into three different zones, in the top
and bottom part of the cell sit compacted particles that
barely move and in the space between these two zones,
we have a region of moving particles of lower density
perturbed by the spontaneous formation of finger-like re-
gions of higher particle density.
In contradistinction to previous works [7–11] where the
focus has been on the evolution of the interface between
the moving particle-zone and the compacted particles at
the top of the cell, we shall here analyze in detail the
bulk-dynamics. In [7, 8] the granular Rayleigh-Taylor in-
stability in air filled systems was studied and it was found
that the finger formation differed qualitatively from sys-
tems filled with highly viscous fluids [9–11] and liquid-
liquid systems. In the former case the finger formation
was shown to coarsen in time, in contrast to observations
in classical liquid-liquid systems and systems of grains
immersed in highly viscous fluids, in these latter cases
a single wavelength turned out to be dominating at all
times.
Previously, the numerical modeling of the granular
Rayleigh Taylor instability has been limited to systems
with compressible interstitial fluids [7, 8]. In the present
work we extend the model to account for incompressible
fluids. In addition we analyze the mixing dynamics over
the whole cell and the sedimentation.

We compare the sedimentation and the particle dynamics
for the case of air with the case of an incompressible liquid
by means of experiments and simulations. The particle
dynamics are analyzed by velocity field histograms, 2d
autocorrelation functions and the power spectrum of the
velocity and density fields. Combining these methods we
find an excellent agreement between our numerical model
and the experiments.
The velocity field of the experiments is extracted by the
use of a correlation image velocimetry (CIV) technique.
A similar technique was applied in studies of sedimen-
tation of beads in silicone oil after the suspension was
mixed with a small propeller [3, 4, 12–15]. In this paper
we present a CIV method that reduces the noise of the
displacement field by use of gray-level cross-correlations
as weights while averaging over several pixels. Our tech-
nique significantly improves the results obtained by stan-
dard procedures. The analysis of the velocity field gives
quantitative interpretation of the different sedimentation
patterns in the case of air compared to the case of the
water/glycerol solution.
The paper is divided as follows. In the next section the
experimental setup and experimental image analysis are
described, followed in Sec. III by a description on the
implementation of the numerical model. The results and
the analysis are presented in Sec. IV and the concluding
remarks are given in Sec. V.

II. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1. We use
a rectangular Hele-Shaw glass cell with the dimensions
5 cm in width by 8 cm in height and a plate spacing of
1 mm. The plate spacing h is achieved by a 1mm thick
silicone frame that ensures the cell to be tight towards
three sides. Through the fourth side the beads, and when
needed the beads in suspension with the fluid, are in-
serted. After the cell has been filled to the designated
height of approximately 3/4 with particles the fourth side
is sealed with silicone paste leaving no air bubbles in the
case of a fluid. In the case of air Dynoseed polystyrene
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FIG. 1: The experimental setup. The cell consists of two
rectangular glass plates. Silicone sealing assures the cell to
be leak proof. The front view shows a picture taken during
an experiment with water/glycerol.

beads with a mass density of ρmp
=1.05 g/cm3 and for wa-

ter/glycerol glass beads with a mass density of ρmg
=2.5

g/cm3 are used. In both cases we sieved particles with
an average diameter of 140±10% µm. This corresponds
to a number of 180000 particles in the simulations.
After the preparation the cell is mounted by the use of
clamps on a rotating bar. To ensure reproducibility, the
sample was always prepared in the same way, flipping the
cell a couple of times created a loose packing with an ini-
tially flat surface at the start of each experiment. Once
the camera is running the cell is flipped upside down in
about 0.2 seconds and pictures are taken at a rate of
1000 fps (frames per second) in the case of air and 50 fps
in the case of water/glycerol. For this purpose we use a
high speed digital camera (Photron Fastcam-APX 120K)
to record pictures with a resolution of 512x1024 pixels.
The rotation is stopped by a stopping bar that is softened
by a piece of expending rubber. Despite the damping of
the cell, the initial patterns are perturbated by the im-
pact. In the analysis, we therefore disregard the early
stage of the experiments.
The experiments with air are done under room condi-
tions of 22◦ in temperature and a relative humidity close
to 30%. The water/glycerol solution has a mass concen-
tration of 30% glycerol. At room conditions the viscosity
was measured to be µf=0.00226 Pa·s and the mass den-
sity of the solution was measured to be ρf=1.065 g/cm3.
It should be mentioned that a small amount of liquid
soap was added to the water/glycerol solution in order
to extract the small air bubbles sticking to the beads.
However, it turned out that the soap lowered the inter-
particle friction as well as the friction between particles
and the walls. Indeed, the soap approximately doubled
the overall propagation speed of the unstable interface.
In all experiments, an amount of 10% of colored parti-
cles was randomly dispersed in the packing to increase
the contrast for the numerical extraction of the velocity

by the CIV technique. The colored particles were of the
same density as the uncolored particles in the case of air
and in the case of water/glycerol.

A. Experimental Picture Analysis

The subject of the analysis in this paper is the whole
dynamic region of the granular Rayleigh-Taylor instabil-
ity. A valuable quantity to study the dynamic region is
the velocity field of the particles. In case of the simula-
tions the velocities are computed at every time step and
are directly accessible. For the experiments the velocity
fields had to be extracted numerically from the pictures
of the high speed camera by the means of a correlation
image velocimetry (CIV) technique. For the CIV tech-
nique we use pictures of 255 gray-levels with a resolution
of 512x1024 pixels. The CIV technique is implemented in
real space, according to classical techniques [16]. The dis-
placement dx, dy between two successive images at each
point x, y is determined by the maximization of the cross-
correlation of the gray-map of squared zones centered at
x, y in the first image, and x+dx, y+dy in the second one.
In addition to the classical treatment, we have developed
an additional filtering method for the resulting velocity
field, utilizing the fact that the obtained maximum cross-
correlation is a measure of the resemblance between the
zones, and thus of the suitability of the CIV technique for
the zone under consideration. To minimize the impact of
artifacts due to aberrant zones where no resemblance is
found with the following pictures, we convolve the veloc-
ity field obtained by a weight, that increases the better
the cross-correlation between the zones is. More specif-
ically, for zones of interest of the size 2i + 1 centered at
x0, y0 and x1, y1, the cross-correlation between gray-map
A and B is defined as:

〈A(x0, y0)B(x1, y1)〉i ≡

i
∑

m=−i

i
∑

n=−i

A(x0 + m, y0 + n)B(x1 + m, y1 + n) (1)

and

〈A(x0, y0)〉i ≡

i
∑

m=−i

i
∑

n=−i

A(x0 + m, y0 + n). (2)

For s1(x, y) and s2(x, y) the two gray-maps of two suc-
cessive images, the normalized gray-maps are defined as:

s′1(x, y) = s1(x, y)/
√

〈s1(x, y)s1(x, y)〉i

s′2(x, y) = s2(x, y)/
√

〈s2(x, y)s2(x, y)〉i (3)

and the cross-correlation between the two pictures as:

C(x, y,∆x,∆y) = 〈s′1(x, y)s′2(x + ∆x, y + ∆y)〉i. (4)

The displacement dx(x, y), dy(x, y) between two succes-
sive pictures for zones centered on (x, y) is determined
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FIG. 2: For the CIV technique the gray-level of two pictures in
a time sequence is compared. In red a sample area is defined
in the first picture. In the following picture it is then tried
to find a similar area with the same gray-level distribution
within the search area shown in blue.

from maximizing C(x, y,∆x,∆y) over ∆x,∆y, i.e. such
as:

C(x, y, dx, dy) =

max
∆x,∆y≤l

[C(x, y,∆x,∆y)] = Cmax(x, y). (5)

For this maximization, we used search values of l = 6
pixels maximum displacement for ∆x, ∆y, and sample
squares of 7x7 with i = 3 pixels. Next, the resulting
displacement is convolved on running square windows of
linear size l, with a weight, w(x, y) = 1/(3−2Cmax(x, y))
on each pixel, i.e. we determine a final average displace-
ment

dxfa(x, y) =
〈w(x, y)dx(x, y)〉i

〈w(x, y)〉i
(6)

dyfa(x, y) =
〈w(x, y)dy(x, y)〉i

〈w(x, y)〉i
(7)

The resulting procedure is tested on simulated images,
by comparing directly the resulting determined velocity
field with the one calculated for the particles in the cor-
responding simulation.

We divide the average displacement by the time step
between two pictures to get the averaged particle veloc-
ity components in x− and y−direction ux and uy.
As stated before it is essential to have a good time reso-
lution in the sequence of pictures. The size of the sample
and search area have carefully been chosen according to
the achieved resolution in our pictures. One pixel corre-
sponds to 100 µm. To estimate how well our CIV tech-
nique is actually working we calculate the velocity field
histogram from two pictures of the simulations one time
with the CIV (left picture in Fig. 3) and another time by
using the simulation data directly (right picture in Fig.
3). To make the direct simulation data comparable to the
CIV data of the experiments we average the velocity of

the single particles in the simulation with an equivalent
procedure as in the experiments. In both pictures the ve-
locity field is visualized on a square grid by blue vectors.
The arrows represent the average of the velocity of the
particles averaged over an area around the position of the
arrow. To clarify the plot the size of the sample area was
chosen to be i = 6, (l = 6) and was larger than the usual
i = 3 pixels that we chose later for the analysis. In the
plot the size of a vector represents the absolute value of
the averaged velocity and the arrow points in direction of
the averaged velocity vector. The velocity field in these
two pictures only shows slight variations and the CIV
technique reproduces the velocities well. For example we
notice easily where fingers are falling down, the velocity
is increased.

However when we analyze the experiments and sim-
ulations we will look at the velocity field histograms in
x- and y-direction. Therefore it is necessary that the
velocity field derived with the CIV-technique leads to
the same histograms as the one derived from the sim-
ulation data provided that we analyze the same picture.
For this reason we compare the histograms derived by
the CIV-technique with the histograms derived from the
simulations for the x-direction in graph 4(a) and for the
y-direction in graph 4(b) in Fig. 4. In the histograms we
divide ux and uy by the average absolute value of the ve-
locity ua. This compensates, that later the camera in the
experiments records better the beads close to the glass
plates which typically move slower. The velocity ua is
defined as follows:

ua =
1

XY

X
∑

i

Y
∑

j

√

u2
x(i, j) + u2

y(i, j) (8)

where X and Y is the extend of the velocity field in x- and
y-direction. In both figures a good agreement between
the two graphs is found showing that the velocity field
extracted with the CIV analysis corresponds very well to
the velocity field using the data directly from the simula-
tions. By computing the deviation σu between the veloc-
ity fields in Fig. 3 for areas where particles travel in dis-
tance between 0.9 and 3.2 of their diameter between two
pictures, we found: σu = 〈|uciv − usim|/usim〉 = 0.19.
The average angle between these vectors of the two ve-
locity fields is α = 〈| arccos[(uciv · usim)/(uciv usim)]|〉 =
6.07◦.

III. THEORY AND SIMULATIONS

The numerical model consists of two parts. One part
is for the fluid using a continuum description derived
from mass conservation and Darcy’s law. The second
part is for the particle motion using Newton’s second
law where the net force on a volume element balances
its acceleration.
The model has been applied successfully in studies of
instabilities of granular flows at low fluid Reynolds
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FIG. 3: Test of the CIV technique: The left picture shows the velocity field derived directly from the simulation data in
comparison with the right picture where the velocity field is obtained by the CIV technique from two pictures of the simulation.
Both pictures show a section from the middle of the cell where most particles are moving.

-4 -3 -2 -1 0 1 2 3 4
u

x
/u

a

1

10

100

1000

10000

C
ou

nt
s

Civ data
Direct simulation data

(a)The velocity field histogram for the x-direction.
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(b)The velocity field histogram for the y-direction.

FIG. 4: Histograms of the velocity field derived by the CIV technique and the velocity field derived directly from the simulation
data.

numbers Re = 2ρfua/µ. Here a is the particle radius,
µ the viscosity and ρf the fluid mass density. The
theoretical derivation of the model is given in detail in
[7, 17–19]. Similar models were developed in [20–22]
with a more detailed description of the fluid component.
In the following we will present the main features of the
model and explain how to include incompressible fluids.
We shall not consider the friction between the particles
and restrict the model to two dimensions to keep the
model computationally simple. However the friction of
the granular flow with the glass plates was found to be
essential and had to be included as will be shown in
section IIID.

A. Dynamics of the fluid - conservation of mass

The fluid description for a compressible and an in-
compressible fluid is derived from mass conservation and
Darcy’s law for the fluid velocity through the porous me-
dia. A different point of view, starting from the Navier-
Stokes equation at small term, and progressively aver-
aging over volumes of various sizes, allows to obtain the
same equations. For the sake of completion, this will be
developed in the appendix, Section VI. It will also allow
to obtain the form of various additional terms of small
magnitude in the fluid stress, notably those related to the
large scale velocity curvature. This approach shows the
connection between the current model with the mixture
theories sometimes used for fluidized beds or debris flows
[23–26].
Here, we will directly use the Darcy law to express the
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seepage velocity of the fluid through the grains.
The local permeability κ is chosen by the Carman-
Kozeny relation in the case of air and in the case of
water/glycerol and can be written in terms of the local
porosity φ and the local solid volume fraction ρs = 1−φ:

κ =
a2

9K

(1 − ρs)
3

ρ2
s

(9)

with a the particle radius and K = 5 an empirical con-
stant valid for a packing of spherical beads [27].
For the mass conservation of the fluid we can write:

∂t(ρfφ) + ∇ · (ρfφvf ) = 0 (10)

where vf is the velocity of the fluid. Similarly for the
grains we get:

∂t(1 − φ) + ∇ · ((1 − φ)u) = 0 (11)

where u is the velocity of the grains. The velocity of the
fluid vf has an advective term and a diffusive term. The
advective term is caused by the motion of the grains and
is equal to the velocity of the grains u. The diffusive
term is due to the gradient of the non-hydrostatic part
of the pressure P that results in a relative velocity of the
fluid to the particles. P corresponds to P = P ′ − ρfgy′,
where P ′ is the pressure, g the gravity constant, and y′

the depth. With air as an interstitial fluid this diffusive
term is described by a local Darcy flow [28, 29]. The
total velocity vf of the fluid is thus the sum of these two
terms:

vf = u −
κ

φµ
∇P, (12)

where µ is the fluid viscosity. Inserting Eq. (12) in Eq.
(10) and assuming that the fluid mass density ρf is re-
lated to the pressure by the ideal gas equation ρf ∝ P
we can write:

∂t(φP ) + ∇ · (φP [u −
κ

φµ
∇P ]) = 0. (13)

∂tφ is eliminated in Eq. (13) by using Eq. (11) and by a
few manipulations a diffusion equation is established for
the non-hydrostatic part of the pressure P , the hydraulic
head. This equation for the case of air includes fluid
compressibility [18, 19]:

φ

(

∂P

∂t
+ u · ∇P

)

= ∇ ·

(

P
κ

µ
∇P

)

− P∇ · u. (14)

In the case of a viscous incompressible fluid as wa-
ter/glycerol. The fluid mass density ρf is not dependent
on the pressure and the hydraulic head can be calculated
by a Poisson equation, which we will derive briefly. By
adding Eq. (10) and Eq. (11) we get:

∇ · (φvf ) + ∇ · ((1 − φ)u) = 0. (15)

A fluid flow between two plates results in a tangential
stress σt between the plates and the liquid. The origin

FIG. 5: Assuming a Poiseuille flow, a tangential stress be-
tween the plates and the particle fluid flow is deduced. This
is a fluid-mediated friction, present even without any inter-
particle contact or particle-plate contact.

of this stress term is discussed in more detail in the ap-
pendix, Section VI.
The tangential stress between the plates and the fluid
depends on the fluid viscosity. The increased viscosity in
the case of the incompressible fluid makes this tangen-
tial stress potentially important. For this reason we will
estimate the influence of this tangential stress with the
side plates. If we solve Eq. (12) for the pressure gradient
we add a contribution to the pressure gradient due to the
tangential stress σt between the plates with plate spacing
h and the fluid, Eq. (12) gives:

∇P =
σt

h
+

φµ

κ
[u − vf ] . (16)

The stress σt between the fluid grain suspension and the
glass plates depends on the fluid velocity vf . The vis-
cosity of this suspension µgs = µφ−2.5 is obtained by the
Einstein approximation [30] for spherical beads [31, 32]
where the viscosity of the fluid µ is multiplied by φ−2.5.
Based on an assumed parabolic flow profile as shown in
Fig. 5 the tangential stress on the flow can be calculated:

σt = −
12µφ−2.5vf

h
. (17)

Defining 1

κp
= 12φ−2.5

h2 we can rewrite Eq. (16):

∇P =
φµ

κ
u −

[

φµ

κ
+

µ

κp

]

vf (18)

we define 1

κ′
= 1

κ
+ 1

φκp
and solve for the fluid velocity:

vf =
κ′

κ
u −

κ′

φµ
∇P. (19)

With Eq. (15) this results in a Poisson equation for the
hydraulic head P :

∇ ·

(

κ′

µ
∇P

)

= ∇ ·

[

u(1 − φ +
κ′

κ
φ)

]

, (20)

If we compare f = κ
φκp

we find for the maximum solid

fraction ρs = 0.6 f = 0.0057 for the minimum solid frac-
tion of ρs = 0.15 we find f = 0.063. Under this condi-
tions we can neglect the effect of the plates on the mass
conservation part of the model and Eq. (18) reduces to
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FIG. 6: Stress and pressure acting on the surface dA of a unit
volume dV .

Darcy’s law, Eq. (12). For air, this reasoning leads to
even smaller values of f , i.e. the correction due to the
fluid coupling to the plates is even smaller, which justi-
fies the use of Darcy’s law. With incompressible fluid,
Eq. (20) thus reduces to:

∇ ·

(

κ

µ
∇P

)

= ∇ · u (21)

for water/glycerol.
Although we can neglect the stress σt in this part in the
next section III B σt contributes to the net force in New-
ton’s second law.
It has to be mentioned that the Carman-Kozeny relation
is a relation where the solid volume fraction is considered
as the volume fraction of a 3d packing of spheres. In our
simulation we consider the particles as cylinders with the
base area Sa = πa2 given by the particle radius and the
height of the plate spacing h. The plate spacing of 1mm
allows approximately 10 particles to be placed along the
normal direction, i.e. our cylinder represents 10 particles
in height. For this reason we multiply the solid fraction
of the cylinders by a factor of 2/3 which is the solid frac-
tion ratio between a randomly close packing of spheres to
a randomly close packing of cylinders. The effect of this
is to have the close packed solid fraction in 2d represent
the close packed solid fraction in 3d.
Furthermore the Carman-Kozeny relation is not valid for
solid fractions below 0.15, therefore we use 0.15 as a cut-
off in Eq. (9), any zone less dense is represented with
a permeability corresponding to ρs=0.15. Such cutoff is
also required numerically to avoid singularities during the
solution of the differential equation (14) and (21) for the
hydraulic head [18]. It effectively results in a code that
rapidly homogenizes the pressure over zones with small
solid fractions, which is physically sound.

B. Dynamics of the particles - Newton’s second law

The movement of the particles under the effect of a
fluid is subjected to buoyancy forces due to the mass
density of the fluid ρf . To calculate the gravitational
force we replace the mass density of the particles ρm with
the effective mass density ρeff = ρm − ρf .
In a unit volume dV with surface dA the particle mass

accounts to ρmρsdV and the fluid mass to ρfφdV and we
can write down the force equation in the following way:

ρmρsdV
du

dt
+ ρfφdV

dvf

dt
= ρeffρsdV g +

∑

FI −

∫

PdA +

∫

σtdA + Fγ . (22)

using FI as the inter-particle force, g is the acceleration of
the gravitation and Fγ accounts for the frictional forces
and energy dissipation as will be specified further in sec-
tion IIID. We also have to integrate the pressure and
stress that is acting on the surface of this unit volume as
shown in Fig. 6.
To simplify Eq. (22) we will justify in Sec. III C that the
particles are small enough to move approximately with
the fluid in a Lagrangian way. Under this conditions we
can approximate the fluid velocity acceleration by the
particle acceleration for the inertial term in the left hand
side of Eq. (22):

du

dt
≈

dvf

dt
(23)

and Eq. (22) results in:

[ρmρsdV + ρfφV ]
du

dt
= ρeffρsdV g +

∑

FI −
∫

∇PdV +

∫

σtdA + Fγ . (24)

Note that this approximation only affects the descrip-
tion of the fluid inertia, and not the drag force from
the fluid on the particles. For a single particle of mass
m = ρmπa2h, volume Va = πa2h and plate spacing h we
can define the number density ρn = ρsρm/m and use in
Eq. (24) the unit volume dV = 1/ρn:

[

m + ρf

φ

ρn

]

dvp

dt
=

ρeffVag + FI −
∇P

ρn

+
σtSa

ρs

+ Fγp
. (25)

This is the force equation for each single particle with
the velocity vp. The mass of the fluid appears in the first
term of this equation and is simply added to the mass
of a particle. The amount of mass from the fluid that
we add to the mass of each particle depends on the local
porosity divided by the number density. This allows to
incorporate the fluid inertia to the model, by changing
the particle mass into a fluid-coated particle mass.
The inter-particle force FI is set to be a linear force with
a spring constant k. The strength of this force is propor-
tional to the overlap of the particles d and the direction of
this force is given by the unit vector nd which points from
the center of the respective bead to the contact point. We
choose the spring constant k strong enough, so that our
particles are approximately hard-spheres. That means,
that the overlap of the particles that occur during the
simulations are a negligible fraction of their distance.

FI(d) = −kdnd. (26)
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The particle propagation is modeled by the velocity

verlet scheme [33].

C. The fluid velocity relative to the particles

To justify our simplification in Eq. (22) we compare
the relative velocity between the grains and the fluid
vd = κ

φµ
∇P with the absolute velocity of the grains

u. Moreover, the acceleration of the fluid relative to the
particles is compared to the absolute acceleration of the
particles. For this test we study two systems. First the
system that we use for the comparison with the exper-
iments. In this system the fluid mass is added to the
grains and the friction with the plates due to the tangen-
tial stress σt is taken into account. Furthermore we test
a second system where the fluid mass density ρf in Eq.
(22) is set to zero and the friction due to the tangential
stress σt is not taken into account. Such a system has
a larger mass density contrast between the fluid and the
particles. Consequently the difference between the accel-
eration of the grains and the fluid must be larger than in
our case with ρf = 1.065g/cm3 where the mass density of
the fluid is closer to the mass density of the grains. Obvi-
ously, for smaller mass densities of the particles relative
to the fluid density, the particles are dragged more easily
along with the fluid. The results of this comparison are
shown in Fig. 8 in the blue curves marked with circles
for the first system and for the red curves marked with
squares for the second system. In Fig. 8(a) and 8(b) the
plots are averaged in time over the whole simulations.
These plots show for the two tested systems that the
relative fluid acceleration is small compared to the total
fluid acceleration and also that the relative fluid veloc-
ity is small compared to the absolute fluid velocity. It
should be emphasized that the relative fluid velocity be-
comes a smaller and smaller fraction of the absolute fluid
velocity the higher the absolute fluid velocity gets in Fig.
8(a). This also holds for the acceleration as shown in Fig.
8(b). This means that the more inertia is connected to
the grains and fluid flow, the better our approximation
in Eq. (23) holds. At low accelerations and granular ve-
locities this approximation becomes less accurate but at
the same time the contribution in Eq. (24) due to the
acceleration: [ρmρsdV + ρfφV ] du

dt
and due to the veloc-

ity: σt are getting less important.
The evolution in time of the fraction between the relative
fluid velocity and the absolute grain velocity is shown in
Fig. 8(c) and between the relative fluid acceleration and
the absolute grain acceleration is shown in Fig. 8(d).
The fraction of the acceleration was averaged over all ab-
solute grain accelerations larger than du

dt
≥ 20cm/s2 as a

cutoff which is 2% of the gravitational acceleration.
For the velocity we only averaged over values where the
absolute grain velocity was larger than u ≥ 1cm/s, at
this velocity the tangential stress arising from coupling
with the plates σt has a significant contribution of 18%
of the gravitational acceleration. The check of the ve-

Pg

Pg

Pg Fa

FIG. 7: The Janssen effect: The in-plane P
||
g stress is being

deflected by the particles resulting in a normal stress P⊥
g on

the plates.

locity and the acceleration differences between the grains
and the fluid reveals that the fluid is largely accelerated
in the same way as the grains and the difference in ac-
celeration is less than 20% even though we examined a
system with a larger density contrast between the grain
and the fluid mass density than what we have in our wa-
ter/glycerol solution. In the plots 8(a) and 8(b) we notice
that the plate friction reduces the absolute grain velocity
significantly. In the blue graph in Fig. 8(a) maximum
grain velocities are 5cm/s which makes inertia effects less
important than in the system without plate friction.

D. Solid friction forces

In addition to the friction between the fluid and the
plates we also consider the friction between the glass
plates and the particles according to the normal stress
P⊥

g in form of a Coulomb friction model into account. It
is most active in the top section and the sediments where
we find not moving compacted particles. This mechanism
prevents the top section of compacted particles from get-
ting unstable and falling towards one side of the cell as a
whole due to a small initial perturbation in the thickness
of this layer of beads that inflates rapidly without the
friction between the grains and the plates as a opposing
force. Here the normal stress of the particles onto the
plates is derived by assuming a local Janssen hypothesis

(see Fig. 7). The average in-plane stress tensor 〈σ
||
ij〉 ex-

erted over a particle with index a in contact with a set
Ca of particles b is obtained as [17, 34]:

〈σ
||
ij〉 =

1

Va

∑

b∈Ca

xb
if

b
j (27)

xb is the position of the contact with grain b, f b the
contact force between the particle a and b and i, j are
Cartesian indices. Va = πa2h is the particles volume
which is described by a cylinder for a plate spacing h.
Eq. (27) can be proven in the following way. Using the
integral theorem of Gauss and replacing the sum over the
surface of one particle in Eq. (27) by the surface integral
over the surface of the particle and applying the Einstein
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FIG. 8: Comparison of the relative to the grains acceleration and relative to the grains velocity of the fluid to the absolute
acceleration and absolute velocity of the grains. A system with plate friction due to a Poiseuille flow and added fluid mass to
the particles (blue curves with circles) is compared to a system without friction due to a Poiseuille flow and without added
fluid mass (red curves with squares).

sum convention we get:
∮

xiσ
||
kjnkdA =

∫

Va

∇k(xiσ
||
kj)dV

=

∫

Va

[(∇kxi)σ
||
kj + (∇kσ

||
kj)xi]dV.

(28)

In the top section and the sediments where particles are
compressed and the Janssen effect is primarily active par-
ticles are in a quasi-static state. In this case inertial terms
are negligible in front of contact forces, so that internal

force balance holds: ∇kσ
||
kj = 0 [35]. In Eq. (28) we can

write:
∮

xiσ
||
kjnkdA =

∫

Va

δkiσ
||
kjdV = Va〈σ

||
ij〉 (29)

and proof Eq. (27). Taking the trace of the stress ten-
sor in Eq. (27) we get the magnitude of the in-plane

stress as: P
||
a = −(〈σ

||
11
〉 + 〈σ

||
22
〉)/2. According to the

Janssen hypothesis the normal stress is proportional to
the in-plane stress by a factor λ. With a Coulomb friction

model we get that the frictional force Fa per particle is
proportional to the normal stress by a friction coefficient
γ. The factor 2 accounts for the glass plates on each side
of the particle.

Fa ≤ 2γSaP⊥
g = 2γλSaP ||

g (30)

This results in finding a value for γ ·λ. To get an estimate
of γ we performed some basic experiments. In these ex-
periments a layer of beads was glued to the under-part
of a weight, which is placed on a glass plate. Lifting one
side of the glass plate we increase the angle of inclination
α gradually and measure the maximum angle αs before
the weight with the beads underneath starts to slide. We
repeated this experiment under water and got in both
cases for the constant γ = tan(αs) ≈ 0.22. For λ we
know that it has to be smaller than 1 since the normal
stress resulting from the Janssen effect can only be as
large as the in-plane stress. With this idea for the range
of the values we chose the constant γ · λ = 0.07 for the
case of water/glycerol and γ ·λ = 0.042 in the case of air.
These values were fine tuned by fitting the propagation
speed of the interface between the top layer and the dy-
namic zone in the simulation to the experimental results.
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(a)Exp. with air at
the start

(b)Exp. with
glycerol/water at the

start

(c)Exp. Cusp shape
patterns for the case

of air at the end

(d)Exp. complete
mixing for the case of
water/glycerol at the

end

FIG. 9: Experiments showing different sedimentation pat-
terns for the cases of air and water/glycerol.

We also tried γ · λ = 0.07 for the case of air with the re-
sult, that the simulations differed slightly more from the
experiments. However the characteristics of the velocity
field distributions remained unchanged.
We also include energy dissipation if particles collide [8].
This is done by introducing a viscous force negative pro-
portional to the relative velocity of the particles vr pro-
jected on the unit vector nd, which points from the center
of one particle to the contact point. The direction of this
force is given by the unit vector nd:

Fd = −γd(vr · nd)nd (31)

For the simulations it is important to have energy dissi-
pation of more than 20% for each collision. From energy
dissipation of 20% upwards the evolution of the simu-
lations does not change noticeable. For energy dissipa-
tion under 20% and less, increasing perturbations are
observed as shown in [8]. The factor γd was chosen to
simulate a energy dissipation of more than 20% of the
energy for each collision with a restitution coefficient of
0.55.
These two mechanisms result in the force Fγ in Eq. (25).

(a)Sim. with air at the
start

(b)Sim. with
glycerol/water at the

start

(c)Sim. Cusp shape
patterns for the case of

air at the end

(d)Sim. complete
mixing for the case of
water/glycerol at the

end

FIG. 10: Simulations showing different sedimentation pat-
terns for the cases of air and water/glycerol.

IV. RESULTS AND COMPARISON BETWEEN

EXPERIMENTS AND SIMULATIONS

To illustrate the difference between experiments with
water/glycerol and experiments with air we performed
two experiments shown in Fig. 9 and two simulations
shown in Fig. 10, for the two studied cases of grains with
air and grains with water/glycerol.
At the start of the experiments and simulations (pictures
(a) and (b) of Fig. 9 and Fig. 10) we have aligned par-
ticles with different colors at the top of a cell.
By comparison of the resulting sedimentation patterns
after the experiments and simulations (pictures (c) and
(d) in Fig. 9 and Fig. 10) are finished we already get
a clear distinction between the two cases of air and wa-
ter/glycerol. While in the case of air the structure of
the initial layers of colored particles survives, we observe
a complete mixing in the case of water/glycerol, apart
from two chunks remaining lowly perturbed, in the case
of the simulations. Such chunks have also been observed
in following experiments. The reason why none of these
lowly perturbated areas occurred in the samples confin-
ing particles deposited in layers, lies to some extent in
the preparation procedure of these samples, which al-
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(a)Simulation with air. Axis units given in (cm).
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(b)Experiment with air. Axis units given in (cm).

FIG. 11: The three rows in figure (a) and (b) show the
time evolution of the simulations (a) and experiments (b) with
air from left to right at times t = 0.05 s, t = 0.19 s, t =
0.36 s, t = 0.46 s and t = 0.6 s. From top to bottom the rows
illustrate the ux/max(|ux|) component and the uy/max(|uy|)
component of the grain velocity vector field and the bottom
row shows the density field ρd/max(ρd). All quantities have
been normalized by its maximum absolute value.

ways were the first in a series of experiments. Creating
a sample with layers meant to move the cell from where
it was filled to the mounting where it was exposed to ad-
ditional stress from clamps. This resulted in a slightly
higher compaction of the cell which increased the normal
stress on the particles that resulted in a higher friction of
the particles with the glass plates. For analyzing purpose
only following experiments were used where the sample
remained in the mounting under constant stress from the
clamps.

A. Analysis

In our experiments we chose the viscosity of the wa-
ter/glycerol mixture in a way that the Reynolds number
with respect to the plate spacing Reh during the experi-
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(a)Simulation with water/glycerol. Axis units given in
(cm).
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(b)Experiment with water/glycerol. Axis units given in
(cm).

FIG. 12: The three rows in figure (a) and (b) show the time
evolution of the simulations (a) and experiments (b) with wa-
ter/glycerol from left to right at times t = 0.8 s, t = 4.6 s,
t = 8.4 s, t = 12.2 s and t = 16.0 s. From top to bot-
tom the rows illustrate the ux/max(|ux|) component and the
uy/max(|uy|) component of the grain velocity vector field and
the bottom row shows the density field ρd/max(ρd). All quan-
tities have been normalized by its maximum absolute value.

ments was sufficient small to assume laminar flow. Typ-
ically the Reynolds number was less than Reh ≤5 dur-
ing the experiments with water/glycerol, and less than
Reh ≤10 in the case of air. In the sequence of pictures
in Fig. 11 simulations are compared with experiments
and the evolution of the granular velocity field u and the
density field ρd is shown for the case of air. From left
to right time is progressing in equal steps from 0.05s to
0.6s after the cell has been flipped. In the sequence of
pictures in Fig. 12 the evolution of the simulations and
experiments for water/glycerol is shown in the same way,
except that here the time runs from 0.8s to 16.8s after
the cell has been flipped.
In this Figs. 11 and 12 we show color maps in the three
rows from top to bottom of the x-component, the y-
component of the velocity field u and the particle density
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field ρd. The velocity fields are calculated after the pro-
cedure described in section IIA. The density field is in
the case of the simulation directly accessible whereas for
the experiments we estimated the density field from the
pixel gray values in the pictures. This provides a good
estimate for air where a large contrast between bubbles
of low particle density and fingers of high particle density
exists. However, for water/glycerol the particle density
is more smeared out and the gray value of the pixels is
a less good estimate of the density. In this case of the
experiment of water/glycerol we will focus on the veloc-
ity data. All the quantities in the Fig. 11 and 12 have
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FIG. 13: Histograms of the x− and y−component α of the
velocity field after 0.2s,0.3s and 0.5s from top to bottom in the
case of air. The histograms show a good agreement between
simulations and experiments.

been normalized to one simply by dividing by the maxi-
mum absolute value. For air as well as for water/glycerol
the lower part of the cell is filled with sediments. On
top of the sediments appears a second zone with mov-
ing particles. In this zone fingers of high particle den-
sity are falling down. Even further towards the top of
the cell particles are still compacted and hardly moving.
But in these two sequences a major difference can also
be observed. In the case of air it appears that most of
the downward-falling particles are part of fingers moving
from the top to the bottom of the cell. In this case of
air we have clearly defined bubbles of low particle den-

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10

Water/Glycerol

u α / u
a

1

10

100

1000

10000

C
ou

nt
s

u
x
 Simulation 

u
y
 Simulation

u
x
 Experiment

u
y
 Experiment

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10

Water/Glycerol

u α / u
a

1

10

100

1000

10000

C
ou

nt
s

u
x
 Simulation 

u
y
 Simulation

u
x
 Experiment

u
y
 Experiment

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10

Water/Glycerol

u α / u
a

1

10

100

1000

10000

C
ou

nt
s

u
x
 Simulation 

u
y
 Simulation

u
x
 Experiment

u
y
 Experiment

FIG. 14: Histograms of the x− and y−component α of the
velocity field after 6s,10s and 15s from top to bottom in the
case of water/glycerol. The histograms show a good agree-
ment between simulations and experiments.
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sity, that have a large density contrast to the fingers of
high particle density. For water/glycerol this is not the
case and this strong contrast does not appear. Here the
density is more smeared out and the areas between the
downward falling fingers are filled with particles moving
upwards together with the fluid making the downward
falling fingers less visible.

1. Velocity field histograms

To compare the experiments with the simulations
and to quantify our observations we calculate the
velocity field histograms of the x- and y-component
of the velocity field ux and uy divided by the average
absolute value of the velocity ua as defined in Eq. (8).
This compensates, that the camera records better the
particles close to the glass walls. The result of the
corresponding histograms for the sequence of pictures
in the air case displayed in Fig. 11 are shown in Fig.
13 and for the water/glycerol case from Fig. 12 the
corresponding histograms are shown in Fig. 14. In the
histograms it was averaged over three experiments and
three simulations resulting in the error bars.
We plotted all the graphs in a semi log plot and a good
agreement between the simulations and the experiments
can be observed. Looking first at the similarities
between the case of water/glycerol and air, we find that
the histograms for the y− component of the velocity
field uy are not symmetric showing that there are more
areas where particles are moving down than up. In the
contrast to the histograms of the y− component the
histograms of the x− component of the velocity field ux

are symmetric and following a exponential distribution.
Apart from the similarities in the histograms two
differences of the histograms in the case of air and
water/glycerol give reason why the observed mixing
behavior is so different as shown in Fig. 9 and Fig. 10.
First the x− and y− velocity component histograms
for the case of water/glycerol are more wide distributed
compared to the case of air. Second if we compare
the positive branch of the y− velocity component
histograms we can see that in the case of air we have
much less particles moving upwards than in the case of
water/glycerol. All these points explain why a better
mixing of the beads in the case of water/glycerol is
observed.
In Fig. 13 where the cell is filled with air the positive
branch of the y− component of the velocity field shows
a wider distribution in the case of simulations than in
the case of the experiments. A possible reason for this
is that we do not take friction between the particles into
account. This causes in the simulations, that sediments
in some regions were moving upwards while for the
experiments the sediments were less mobile due to the
friction between the particles. It is also possible to see,
that the difference between the simulations and the
experiments of this positive branch of the y− component

of the velocity field is getting larger with time, as more
sediments have accumulated.

2. Autocorrelations

A way to quantify the size of the dynamic patterns
is to calculate the autocorrelation function in 2d Cα(d)
where α = x, or y the x, or y- component of the velocity
field u(i, j):

Cα(d) =

∑

r
((uα(r) − 〈uα〉)(uα(r + d) − 〈uα〉))

∑

r
(uα(r) − 〈uα〉)2

. (32)

In this equation the autocorrelation function is normal-
ized by the standard deviation.
The autocorrelation in 2d is shown in Fig. 15 for air and
water/glycerol for corresponding time steps to Fig. 11
and 12. The Figs. in 15 demonstrate 2d autocorrelation
functions of simulations in part (a) and (c) and of ex-
periments in part (b) (d). The first row of these plots is
the 2d autocorrelation function of the ux component of
the velocity field and the second row the uy component
of the velocity field with time progressing in equal steps
from left to right.
In both cases the autocorrelation of the uy component
shows periodic vertical lines of stronger correlation di-
rected along the y-axis in contrast to the autocorrelation
of the ux component of the velocity field which shows
equal distribution along the x- and the y-axis.
The difference between the example of air as a compress-
ible and water/glycerol as an incompressible fluid are
more pronounced in the Figs. for the uy component of
the velocity field. In these figures we can observe, that
in the case of water/glycerol the periodic vertical lines
of stronger correlation are thinner in x-direction than in
the case of air where these lines take an elliptical shape
to the end of the experiments and the simulations.
With time progressing we observe that the frequency of
these lines decreases in both cases. This reflects the
coarsening process of the structures which we further in-
vestigate in section IVA 3.
The plots show, that the simulations and the experiments
lead to very similar behavior in terms of the autocorre-
lation field.

3. Mean wave number

The temporal evolution of the periodic structures can
be measured by performing a Fourier analysis of both
components of the velocity field u and the density field
ρd. Since the density field is not accessible directly in
the experiments we will use the pixel gray values instead.
This approximation is a good estimate in the case of air
where we have a large density contrast between the empty
bubbles and the downward falling fingers. However this
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to Fig. 11 and 12.
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FIG. 16: The average wave number 〈k〉 as a function of time for air and water/glycerol for the velocity field u and the density
field ρd.
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FIG. 17: The standard deviation σk as a function of time for air and water/glycerol for the velocity field u and the density
field ρd.
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approximation is a less good estimate in the case of the
experiment with water/glycerol in Fig. 16(d), where the
density of the particles is more smeared out and the pixel
gray value does not correspond well to the density of the
particles.

In this case we are forced to resort to the velocity data
only and display the average wave number of the density
field for completeness.
The average wave number is calculated in the following
procedure. For each horizontal line j of the velocity field
components uαj

− 〈uαj
〉 or the density field minus the

average ρd
j
−〈ρdj

〉 the power spectra Sj(k) is calculated

using a Hamming data window. Taking the average of
these power spectra results in a single power spectrum
S̄(k) as a function of the Fourier modes k. From this dis-
tribution the average wave number 〈k〉 and the standard
deviation σk can be calculated by:

〈k〉 =

∑

kS̄(k)
∑

S̄(k)
(33)

σk =

√

∑

k2S̄(k)
∑

S̄(k)
− 〈k〉2 (34)

The two measures are evaluated for the whole cell below
the upper surface to avoid contributions apart from the
sediments and the bulk. Figure IVA 1 and 16 show 〈k〉
as a function of time for the x- and y-velocity field com-
ponent and the density field for air and water/glycerol.
The error bars are the result from averaging over
three different experiments and simulations. In the
simulations for air and water/glycerol we observe that
the wavenumber decreases during the first quarter of
the total time. This coarsening is less pronounced in
the experiments because the initial patterns are strongly
perturbated by the rotation of the cell and the initial
front contained some minor perturbations. After the
first quarter a stable average wavenumber is achieved
with air and with water/glycerol. Simulations and ex-
periments result in similar stable average wavenumber.
This average wavenumber lies around two times higher
in the case of water/glycerol than in the case of air.
The figures for the standard deviation of air in Fig.
IVA 1 and water/glycerol in Fig. 17 show after the first
quarter of total time, that the values for water/glycerol
are roughly 1.5 times higher than for air. This is the case
for both simulations and experiments. The higher values
for the standard deviation indicates a wider distribution
of the modes in the experiments and simulation with
water/glycerol.

V. CONCLUSION

We have developed a numerical model, that describes
the granular Rayleigh-Taylor instability for grains mixed

either with compressible or incompressible fluids at
low Reynolds numbers. In this model we adjusted the
fluid compressibility from ideal gas to incompressible
behavior. We incorporated fluid inertia and viscous
forces which lead to a hydrodynamic particle-particle
coupling and a coupling between the fluid and the
confining plates. In addition the model also includes
solid friction between the particles and the confining
plates. The physical effect of these various terms, their
relative importance and the strategies to approximate
in simple and computationally efficient ways, have been
discussed and evaluated numerically by switching some
of these terms on or off and evaluating the effect of the
resulting flow. We designed and conducted experiments
with compressible and incompressible fluids that where
well matched quantitatively with our model. From
these experiments the velocity field of the particles was
extracted by a CIV technique, that we improved relative
to standard procedures by introducing an additional
filtering technique.
The forming patterns and their dynamics were analyzed
and compared between the experiments and the sim-
ulations. Evaluation of the pictures of the simulation
and the pictures of the experiments, velocity field his-
tograms, 2d autocorrelation and the power spectrum of
the velocity field showed that our model reproduces well
the dynamics of the experiments in both studied cases
of water/glycerol and air. Furthermore the analysis of
the velocity field and density field resulted in a better
understanding of the different mixing behavior in the
two studied cases as described in chapter I. Two main
differences in the histograms and different correlation of
the uy component of the velocity field could be iden-
tified, which explains the complete mixing in the case
of water/glycerol and the observation of sedimentation
patterns in the case of air.

VI. APPENDIX

In this appendix our model shall be compared to the
work of [23, 24] where the Navier-Stokes equation is
solved directly. In contrast to the work on fluidized beds
of [23, 24] in our model we will only consider the dominat-
ing terms of the Navier-Stokes Eq. (35) as demonstrated
in the following. We will show that this approach also
leads to the fluid equations (14 and 21) derived in Sec.
IIIA.
The Navier-Stokes equation for incompressible or lowly
compressible fluids in the regime of low Reynolds num-
bers states:

∂t(ρfvf ) = −∇P + ∇ · T. (35)

In Eq. (35) the term ∇ · T = µ∇2vf accounts for the
stress induced by the curvature of the fluid flow pro-
file. It can be separated into a contribution from the
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fluid flow curvature at small scales, between the par-
ticles: (∇ · T )s = µ∇2

svf and a contribution from the
fluid flow curvature on a scale larger than the particles:
(∇ · T )l = µ∇2

l vf . The high wavenumber curvatures
(∇ · T )s of the fluid flow profile between the particles
are defined to be separated by a cutoff wavenumber K
from the low wavenumber curvatures (∇·T )l. The cutoff
wavenumber K represents the inverse size of the represen-
tative volume elements of the Darcy law. With a Fourier
decomposition the stress term T can easily be divided
into high and low wavenumber contributions [36]:

µ∇2vf = (∇ · T )s + (∇ · T )l =
∑

k>K

(∇ · T )keikr +
∑

k≤K

(∇ · T )keikr. (36)

To solve Eq. (35) we consider a discrete square grid of
2.5 particle diameters on which we average the particle
velocity and the density. Integrating the force (∇·T )s up
to this grid scale in the reference frame of the particles
leads to Darcy’s law in Eq. (12): 〈(∇·T )s〉 = φµ

κ
(u−vf ).

Thus Eq. (35) can be rewritten after averaging for small
volumes (see [23–26] for details):

∂t(ρfφvf ) = −φ∇P +
φ2µ

κ
(u − vf ) + (∇ · (φT ))l. (37)

In this equation the second term on the right hand side
is related to Darcy’s law. It is the dominating term to-
gether with the gradient of the pressure in the situations
we consider. The third term on the right hand side is de-
rived from (∇ · T )l and accounts for the curvature of the

fluid velocity field in a global reference frame. It can be
divided into an in-plane and an out of plane contribution:

(∇ · (φT ))l = (∇ · [µφ((∇vf ) + (∇vf )
T )])l =

((∇⊥ + ∇‖) · [µφ((∇vf ) + (∇vf )
T )])l. (38)

The analysis done in Sec. III C and the measured auto-
correlation functions in Sec. IVA 2 show that the inertia
term ∂t(ρfφvf ) in Eq. (37) is negligible compared to
Darcy’s law. Furthermore this analysis also shows that
the out of plane contribution of the term (∇⊥(φT ))l is
dominating over the in-plane one. The reason for this is
that the fluid flow is correlated in average for 5 mm in
the in-plane direction but only 1 mm out of plane. Inte-
grating

−φ∇P +
φ2µ

κ
(u − vf ) + (∇⊥φT ))l = 0 (39)

over the thickness h of the cell we get a shear stress con-
tribution σt from the term (∇⊥φT ))l. With this shear
stress Eq. (39) is equivalent to Eq. (16).
A comparison of this out of plane contribution to the
Darcy term was done in Eq. (17-20) in Sec. IIIA. This
analysis showed that the out of plane contribution was
small compared to the Darcy term. Finally only Darcy’s
law remains in Eq. (37) which brings us back to the
derivation of the fluid equation in Sec. IIIA from Eq.
(12).
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[9] C. Völtz, W. Pesch, and I. Rehberg Phys. Rev. E 65

011404 (2001)
[10] C.Völtz, M.Schröter, G.Iori, A.Betat, A.Lange, A.Engel,

I.Rehberg, Phys. Rep. 337 117-138 (2000)
[11] A.Lange, M.Schröter, M.A.Scherer, A.Engel, I.Rehberg,

Eur. Phys. J. B 4 475-484 (1998)
[12] L. Bergougnoux, S. Ghicini, E. Guazzelli, J.E. Hinch,

Phys. Fluids, 15 1875-1887 (2003)
[13] E. Guazzelli, Phys. Fluids, 13 1537-1540 (2001)

[14] H. Nicolai, B. Herzhaft, E. J. Hinch, L. Oger, E.
Guazzelli, Phys. Fluids, 7 12-23, (1995)

[15] H. Nicolai, E. Guazzelli, Phys. Fluids, 7 3-5 (1995)
[16] A. Lagarde, eds, Advanced optical methods and applica-

tions in solid mechanics, Kluwer,Dordrecht (The Nether-
lands), (2000)

[17] Ø. Johnsen, R. Toussaint, K. J. Måløy, and E. G.
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