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The effect of an interstitial fluid on the mixing of sedimenting grains is studied numerically in a
closed rectangular Hele-Shaw cell. We investigate the impact of the fluid compressibility and fluid
viscosity on the dynamics and structures of the granular Rayleigh-Taylor instability. To characterize
the patterns and motion the combined length of the particle trajectories in relation to the movement
of the center of mass is analyzed and the separation of particle pairs is measured. Depending on
the fluid viscosity, the initial dynamics of the particles can be classified into two regimes. Low
fluid viscosities result in a non-hydrodynamic or ballistic regime, while at high fluid viscosities a
transition from diffusive to turbulent-dispersive behavior is observed.

I. INTRODUCTION

Granular materials play an important role in geological
processes, for example in erosion or avalanche processes
[1–3]. Handling granular materials is in addition the daily
basis of many of our industries, such as mining, agricul-
ture, civil engineering and pharmaceutical manufactur-
ing. The field of dry granular materials and the enormous
richness and complexity of granular motion and granular
flows have provided the research of the last twenty years
with numerous questions. In granular flows the presence
of an interstitial fluid has been shown to strongly affect
the dynamics of the grains [4–8]. The fluid compress-
ibility and the fluid viscosity may well have an effect on
the dynamics of the grains, for example in fluidized bed
reactors, but have not been in much focus.
The Rayleigh Taylor instability in granular fluid mixtures
has been studied with different types of fluids. With air
the influence of the grain size was systematically investi-
gated [9–11] and the behavior of this instability was com-
pared between the cases where the interstitial fluid was
air or water/glycerol [12]. In a comparable study of the
Saffman-Taylor instabilities for granular / fluid mixtures
oil or air was utilized as interstitial fluids [13, 14]. In
our previous work [12] we have found in experiments and
simulations, that the mixing of the grains with the fluid
during the granular Rayleigh-Taylor instability was very
different whether we used air or a water/glycerol solution
as the interstitial fluid. In pursuit to study this influence
we further developed a numerical model [9, 10, 13, 15],
that was proven [12] to reproduce well the experimentally
measured dynamics of the grains in presence of a fluid.
Even though we could give a quantitative explanation
with the characterization of the correlation lengths and
velocity field histograms, it is still an open question if the
mixing behavior is a result of the fluid grain coupling to
a compressible or incompressible fluid and how big the
influence of the fluid viscosity is. To further answer this
question we will perform numerical simulations with the
goal to study the effect of the fluid viscosity and fluid
compressibility on the mixing behavior during sedimen-
tation. For this purpose the fluid viscosity and fluid com-

pressibility are systematically and independently varied.
These simulations show that the fluid compressibility has
a small effect on the mixing except in extreme cases.
The change of the fluid viscosity leads to two regimes
of particle pair separation. A non-hydrodynamic or bal-
listic regime at low fluid viscosities, and a hydrodynamic
regime at high fluid viscosities, with a crossover from dif-
fusive to turbulent-dispersive behavior.
The paper is organized as follows. In the next section
the implementation of the numerical model is briefly dis-
cussed. For more details and explanations see [9, 10, 12,
13, 15]. The results of the simulations with varied fluid
compressibility and viscosity are presented in Sec. III.
In IIIA and III B the effect of the fluid compressibility is
studied. The effect of the fluid viscosity is studied and
discussed in Sec. III C followed by the conclusions in Sec.
IV.

II. THEORY AND SIMULATIONS

The numerical model is a two dimensional (2d) hybrid
model that uses a continuum description for the fluid
and a discrete description of the granular phase. Friction
between particles or the particles and the side-plates is
neglected. Further we neglect the friction between the
fluid and the side-plates. The model is derived in details
in [9, 10, 12, 13, 15]. It was tested and shown to re-
produce the dynamics of granular flows at low Reynolds
numbers and we will only present the main equations for
the evolution of the non hydrostatic part of the pressure
field P and the dynamics of the particles briefly.

A. Dynamics of the fluid

The equations ruling the evolution of the non-
hydrostatic part of the pressure, also termed the hy-
draulic head P , are derived in detail in Ref. [15]. The
non hydrostatic part of the pressure, P , corresponds to
P = P ′ − ρfgy′, where P ′ is the pressure, g the grav-
ity constant, ρf the fluid density, and y′ the depth. In
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the following we will only present and discuss the main
equations briefly. We start with mass conservation of the
fluid:

∂t[ρf (P )φ] + ∇ · (ρf (P )φvf ) = 0 (1)

where vf is the velocity of the fluid and φ the local poros-
ity: For the mass conservation of the grains we get:

∂t(1 − φ) + ∇ · ((1 − φ)u) = 0 (2)

where u is the velocity of the grains. The velocity vf of
the fluid is the sum of the local velocity relative to the
grains, derived from Darcy’s law, plus the velocity of the
grains:

vf = u − κ

φµ
∇P, (3)

where µ is the fluid viscosity and κ the local permeability.
Using Eq. (3) in Eq. (1) we get:

∂t(φρf (P )) + ∇ · (φρf (P )[u − κ

φµ
∇P ]) = 0. (4)

Eliminating ∂tφ between Eq. (2) and Eq. (4) and taking
the fluid mass density ρf (P ) to be related to the pressure
by the compressibility βT = −(1/V )∂V/∂P through an
equation of state that we linearize around the background
pressure P0 with ρ0

f the fluid mass density at P0:

ρf (P ) ≈ βT ρ0

f (P − P0) + ρ0

f , (5)

we get after a short calculation a diffusion equation for
the non-hydrostatic part of the pressure P . This equation
in general implies the fluid compressibility [15, 16]:

φ

[

∂P

∂t
+ u · ∇P

]

= ∇·
[

P̂ (βT )
κ

µ
∇P

]

−P̂ (βT )∇·u. (6)

Where we have defined P̂ (βT ) = ρf/(ρ0

fβT ) = P − P0 +

1/βT .
Since in this work we only simulate fluids with the mass
density of air as the interstitial fluid we can neglect the
density of the fluid ρf and the hydraulic head corresponds
to the local pressure: P ′ ≈ P .
In the case of air, considered as an ideal gas we get βT =
1/P0 at P0 and Eq. (6) results in:

φ

[

∂P

∂t
+ u · ∇P

]

= ∇ ·
(

P
κ

µ
∇P

)

− P∇ · u. (7)

At the other end of fluid compressibility types, the in-
compressible limit where βT → 0, Eq. (6) results in a
Poisson equation:

∇ ·
(

κ

µ
∇P

)

= ∇ · u. (8)

In both cases we calculate the local permeability κ by
the Carman-Kozeny relation [17]:

κ =
a2

9K

(1 − ρs)
3

ρ2
s

(9)

ρs = 1 − φ is the solid volume fraction, a the particle
radius and K = 5 an empirical constant valid for a
packing of beads [15].

B. Dynamics of the particles

The force equation for a single particle with the veloc-
ity vp, particle mass m = ρmπa2h, particle mass density
ρm, volume Va = πa2h in a cell with a plate spacing of h
and the number density defined as ρn = ρsρm/m is given
by:

m
dvp

dt
= ρeffVag + FI −

∇P

ρn

+ Fd (10)

where ρeff = ρm − ρf enter in the buoyancy forces in
the first term of the left hand side, FI are the inter-
particle solid contact forces, the third term arises from
the momentum exchange between the fluid and solid, and
Fd is a viscous force accounting for energy dissipation.
To approximate a situation of hard spheres we choose
the inter-particle force FI be a linear force with a spring
constant k high enough to make the overlap of particles
during collision a negligible fraction of their diameter.
If particles collide we include energy dissipation with a
restitution coefficient of rs = 0.13 [10]. This is modeled
by a viscous force, active only during particle contact.
This force is proportional to the relative velocity of the
particles vr, and oriented along the unit vector nd, which
points from the center of one particle to the contact point:

Fd = −γd(vr · nd)nd (11)

The particle propagation is modeled by the velocity Ver-
let scheme [18, 19].

III. RESULTS

For the simulations presented in this paper we used a
Hele-Shaw cell in x−direction of ∆x =5 cm in width and
in y−direction ∆y =7 cm in height. The cell is entirely
closed on all sides, both for the fluid and for the grains.
The mass density of the fluid was constant, set to the
mass density of air ρf = 1.29 kg/m3 and we considered
particles of a mass density of ρm = 2500 kg/m3. The ini-
tial pressure considered corresponds to atmospheric pres-
sure, P0 =100 kPa at the top of the cell. The average size
of the particles is 140 µm and to avoid the formation of
a triangular lattice the particle diameter was defined to
have a flat size distribution with a range of ±10% vari-
ation about the mean. In total approximately 140000
particles are considered in the simulations. The only vari-
ables that we vary in the following are the viscosity of the
fluid µf and the compressibility of the fluid βT . The ini-
tial state is prepared in the following way: particles are
first let to rest on the bottom up to when a fraction of
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FIG. 1: A layer of beads falls through a gap in vacuum time progresses from left to right. White areas represent areas where
the particle density is zero. The gray and black areas represent areas filled with particles and the stripes are added artificially
to better demonstrate the dynamics. From left to right time progresses in equal time steps.

2/3 of the cell volume is filled. The inter-particle space is
filled with the interstitial fluid considered. Then, gravity
is instantaneously reverted, corresponding to a sudden
upside down flipping of the cell, and particles start to fall
from their initial configuration, and initial zero velocity.
In all the simulations the cell could be divided into three
zones independently of the type of fluid. In the base of
the cell, where particles have sedimented, and in the top
section we find a bulk of compacted particles. In these
two sections particles are hardly moving relative to each
other. In between these two sections, we find a dynamic
section with mobile dispersed particles. The particles in
this section move while forming fingers of higher particle
density and bubbles of lower particle density.

A. The effect of the compressibility on the

granular Rayleigh-Taylor instability

The dynamics of the particles in the Hele-Shaw cell sig-
nificantly depends on the interstitial fluid. In vacuum we
do not see any evolution of patterns in the density field as
shown in Fig. 1. Since all particles start at zero velocity,
indeed, they simply all homogeneously fall in free fall, up
to the moment when they contact the lower boundary
and bounce back. In Fig. 2 an interstitial fluid however
is present. While falling through the gap of fluid here the
particles develop downward falling fingers of high parti-
cle density and rising bubbles of low particle density. In
this section we are going to investigate the effect of the
fluid compressibility on the dynamics of the particles.
In Fig. 2 we therefore vary and compare the dynam-
ics for different fluid compressibilities. While the fluid
viscosity is kept fixed and set to µf (air) =0.018 mPa·s
which corresponds to air at room conditions of 25◦ Cel-
sius and atmospheric pressure, the bulk modulus varied
from κT = 1/βT = 1 kPa to incompressible behavior.
From the plots of the density field in Fig. 2 we can iden-

tify two main differences due to the change in compress-
ibility. First we find for the high compressible cases with
a bulk modulus of κT ≤ 5 kPa that at times t ≤ 0.12 s
bubbles of low particle density appear at the upper end
of top section and right above the fingers in Fig. 2 in the
picture at t =0.126 s in the top row. For a higher bulk
modulus these bubbles are not present and the top sec-
tion stays uniformly compacted. And second we notice
that in the beginning the center of mass of the whole top
section moves further down the more compressible the
fluid is. This movement of the top section stops when
the weight of the packing is balanced by the overpres-
sure of the compressed air in the base and the under-
pressure in the upper part of the cell. In Fig. 3 we plot-
ted the movement of the center of mass of all particles
∆Rc(t) = Rc(t)−Rc(0) in time. In the plots we observe
oscillations of the top section for all the bulk modulii be-
low κT ≤ 5 kPa. Above this limiting bulk modulus, the
movement of the center of mass does not seem influenced
by the compressibility of the fluid. The oscillations are
governed by the inertia of the mass of the grains in the
top section and the elasticity of the fluid given by the
bulk modulus. After the pressure rises in the bottom
part of the cell fluid seeps through the porous media, ex-
changing momentum between the particles and the fluid
and damping the oscillations. The system can show tran-
sient oscillations, which we observe for κT ≤ 5 kPa or be
in an over-damped regime for κT > 5 kPa.
In Fig. 4 we analyzed the excess path length r(t) of the
lowest layer of N = 8000 particles at t = 0 s, where the
position of the ith particle is given by ri(t). The displace-
ment of the center of mass of the lowest layer of N = 8000
particles is ∆rc(t) = rc(t)−rc(0) and we define the excess
path length r(t) as:

r(ts) =

∑N
i

∑s
j=1

|ri(tj) − ri(tj−1)|
N

− (rc(ts) − rc(0)).

(12)
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FIG. 2: Comparison of simulations with different fluid compressibility at a fluid viscosity of air: µf (air) =0.0182 mPa·s. Gray
and black areas represent areas filled with particles. The stripes are added artificially to better demonstrate the dynamics.
From left to right time progresses in equal time steps and from top to bottom the bulk modulus is increased.

With the first sum over the particles and the second sum
over the time steps j. If particles are falling straight with
this definition in Eq. (12) the excess path length is zero.
The excess path length is a measure of the complexity
of the particles trjectories. The time resolution is small
enough that no significant deviation was found when we
only used every second time step instead of every time
step.

In Fig. 4 we plotted the average excess particle trajectory
r(t) in relation to the movement in y-direction of the
center of mass ∆rc. We notice that the excess trajectory
is almost zero until the particles hit the bottom of the
cell at rc = 1.6 cm. This shows that the particles of this
lower layer are falling mostly straight through the gap,
independently of the compressibility of the fluid.
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FIG. 3: The y-position of the center of mass of all particles is
plotted in time for different bulk modulii.
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FIG. 4: The excess path length r(t) in Eq. (12) is plotted in
time. Particles are falling mostly straight downwards and the
bulk modulus hardly effects the excess path length.

B. When does compressibility become important?

To estimate when compressibility becomes an impor-
tant factor and affects the dynamics we have to check two
conditions. First if the weight of the packing of grains is
enough to significantly compress the fluid in the base. In
Eq. 5 this means that the pressure difference is compara-
ble to the background pressure P0 = κT for an ideal gas.
In this case we experience oscillations of the top section
if friction is neglected like in our case for a bulk modulus
κT ≤ 5 kPa. Secondly we can define a skin depth for the
pressure drop inside the porous matrix. For this simpli-
fied analysis we start with Eq. (6) and work in a reference
frame moving with the particles. We assume small de-
formations of this falling particle plug, hereby neglecting
the relative motion between the particles. We further
take the solid fraction to be homogeneous ∇κ

µ
= 0 and

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

κT (kPa)

s(
cm

)

 

 

t =0.01s

t =0.05s

t =0.32s

FIG. 5: The skin depth for different bulk modulii at time
steps connected with the oscillations: t =0.01 s and t =0.05 s.
At the time that the top layer takes to fall through the fluid
t =0.32 s the skin depth is much larger than the system size.

that the pressure difference in the cell is small compared
to the background pressure P0. This gives P̂ ≈ κT and
Eq. (6) simplifies to a diffusion equation:

∂P

∂t
=

κT κ

φµ
∆P. (13)

The fundamental solution to this equation is:

P (x) =
1√

4πDt
e−

x2

4Dt (14)

where D = κT κ
φµ

. In Eq. (14) we can define a skin

depth s where the pressure has decayed by P (s) = 1

e
.

This skin depth is given by: s =
√

4Dt. We can now
compare this skin depth with the size of the Hele-Shaw
cell. For typical values of ρs = 0.6, µf (air) =0.018 mPa·s
and t = 0.01 s, t = 0.05 s and t = 0.32 s we find a skin
depth as shown in Fig. 5. The first two time steps cor-
respond to the time steps that are in the range of the
observed pressure oscillation period. The last is the time
that the top layer takes theoretically to fall through the
fluid gap, when the velocity of the top layer is given by
the Darcy velocity vd = κ

µf
∇P and the pressure force bal-

ances the weight of the grains ∇P = ρsρmg for a solid
fraction of ρs = 0.6. In this Fig. 5 we have calculated
the skin depth s for different bulk modulii. At the time
that the top layer takes to fall through the fluid t =0.32 s
the skin depth is much larger than the system size for
all κT . At the times connected with the oscillations the
figure shows that the skin depth is in the range of the
system size for all κT ≤ 5 kPa. For κT > 5 kPa the skin
depth gets much larger than the system size of 7 cm. If
we compare now the plot of the density field in Fig. 2 we
can see that the lower compressibility affects rather the
system when the skin depth is smaller than the size of the
Hele-Shaw cell. When the packing of beads starts to fall
downwards the pressure in the bottom of the cell will in-
crease while in the top of the cell the pressure decreases.
In the highly compressible case and for a homogeneous
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FIG. 6: The particle density field of simulations with different viscosity. From left to right time is progressing and from top to
bottom the viscosity is increased. If not specified the axis units are given in centimeters. White areas represent particle free
areas. Bubbles of low particle density can be observed.

layer of beads the solution of the simple diffusion Eq.
(14) has a curved profile and a skin depth smaller than
the system size as shown in Fig. 7. Since the volume of
fluid in the bottom of the cell is much larger than in the
top the movement of the particles will cause the pressure
to drop faster in the top of the cell than the pressure
increases in the bottom of the cell. This under-pressure
in the top part of the cell will strongly slow down the

falling of the upper most particles where the pressure
gradient is the strongest. Inside the packing away from
the upper layer the upward force on the particles, the
pressure gradient decreases. Due to this decrease of the
acceleration on the particles the layer expands in the top
part, creating the bubbles of low particle density. If on
the contrary the skin depth is larger than the system
size, the pressure profile becomes linear and the pressure
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FIG. 7: The averaged pressure profile as a function of the
depth at t = 0.02 s.

gradient the acceleration of the beads is constant. The
packing shows no noticeable expansion apart from its de-
compaction happening at its lower boundary, which is a
different effect. The oscillations of the top layer can be
described in a simplified way through a differential equa-
tion equivalent to a damped harmonic oscillator. The
particles in the top layer shall be considered as a piston
with a constant permeability and no relative movement
of the particles. Using Y (t) ≈ ∆Rc(t) as the position of
the center of mass of all particles and M as their total
mass. The initial empty volume in the bottom part is
given by Vb(0) and the top part by Vt(0). The thickness
in y-direction of the top layer is L and the cross section
area A = ∆xh. We can state:

MŸ − Mg = −A(Pb − Pt). (15)

In this simplified picture the cell consist of two compart-
ments separated by a porous piston. The pressure gradi-
ent inside the piston is assumed to be constant and equal
to the overall pressure gradient between the two compart-
ments corresponding to the long term limit of the pres-
sure profile if the fluid is compressible. The change of the
fluid volume in the bottom compartment Vb(t)−Vb(0) is
negative to the change in fluid volume in the top com-
partment Vb(t) − Vb(0) = −(Vt(t) − Vt(0)). There are
two possibilities mechanisms effecting the fluid volumes.
First compression or expansion of the fluid due to the
movement of the piston, and second the flow through the
porous piston. This leads to the following expression for
the fluid volume in the bottom compartment:

Vb(t) − Vb(0) =

[

−Ay +
Aκ

µ

∫ t

0

Pb − Pt

L
dt

]

(16)

With the definition of the bulk modulus κT = −V ∂P
∂V

the
pressure difference between top and bottom part can be
calculated:

Pb − Pt = − κT

Vb(0)

[

−Ay +
Aκ

µ

∫ t

0

Pb − Pt

L
dt

]

− κT

Vt(0)

[

−Ay +
Aκ

µ

∫ t

0

Pb − Pt

L
dt

]

.(17)

Using now Eq. (15) in Eq. (17) and integration results in
the differential equation of a damped harmonic oscillator:

Ÿ + αẎ + βY = γt + g. (18)

Where the constants are defined by:

α =
κκT A

µL

(

1

Vb(0)
+

1

Vt(0)

)

β =
κT A2

M

(

1

Vb(0)
+

1

Vt(0)

)

γ =
κκT Ag

µL

(

1

Vb(0)
+

1

Vt(0)

)

(19)

With a standard ansatz Y (t) = eλt in Eq. (18) two
solutions of the homogeneous equation are found:

λ1,2 = −α

2
±

√

α2

4
− β. (20)

The system will be over-damped if the square root of Eq.
(20) is positive and oscillations only occur if the square
root is negative. This is the case if:

κ2κT M

4µ2L2

(

1

Vb(0)
+

1

Vt(0)

)

< 1 (21)

Assuming a system with the constants used in the sim-
ulations Eq. (21) predicts a critical bulk modulus of
κT = 589.3 kPa for the transition from an over-damped
to a damped system. Here we furthermore assumed
that Vb(0) = Vt(0) = Ah(1.0 cm) and a solid fraction
of ρs =0.6. If the initial volume is Vt(0) = Ah(0.1 cm)
and Vb(0) = Ah(1.9 cm) the critical bulk modulus is
κT = 111.9 kPa. Recalling Fig. 3 it can be seen that
the transition occurs at comparable values in the simu-
lations.

C. The effect of the viscosity on the granular

Rayleigh-Taylor instability

In Fig. 6 the influence of the fluid viscosity µf is
demonstrated in plots of the density field in black and
white, where black stands for high particle density.
Stripes in gray were added to emphasize the particle
dynamics. The viscosity is changed from a value close to
the viscosity of air µf (air) =0.018 mPa·s and increased
in steps with increasing step size. When the viscosity is
increased a clear difference in the dynamics in the cell
can be observed. The structures get smaller and the
evolution of the dynamics is slowed down. When the
viscosity is increased the fingers finally disperse before
they have reached the base of the cell. In the further
progress the most advanced bubble of low particle
density accelerates until the top section of compacted
grains has been broken through. After this breakthrough
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the top section gets unstable and the remaining blocks
of compacted grains remain compacted while falling
downwards. This is a rather different dynamics, where
we have already observed that the friction with the side
plates is an important parameter [12]. The focus of this
manuscript shall be kept on the start of the Rayleigh
Taylor instability, which is less sensitive to boundary
conditions, and allows to concentrate on the parametric
study of the viscosity and compressibility effects. Thus,
we have chosen not to study in details this final stage
of the dynamics and we concentrate on the beginning of
the simulations when the top layer is still intact.
The analysis of the excess path length of Sec. IIIA in
Eq. (12) performed on the simulations with different
viscosity leads to the plot in Fig. 8. Here we can see
that the first 8000 particles follow a longer trajectory
in relation to the movement of their center of mass the
more viscous the fluid is. There is no simple way to
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FIG. 10: ∆d the average distance of particle pairs in time
for high viscous fluids in bilogarithmic representation. The
initial separation of the pairs has a diffusive behavior with an
exponent close to b = 0.5 in the dashed line. In the progress a
crossover to a turbulent-dispersive behavior is observed with
a slope close to b = 1.5 in the solid line.

rescale all the plots, and collapse them for all viscosities.
This shows that the characteristics of the patterns in
the density field and the dynamics of the particles are
changed due to the viscosity. However, we remark
that they regroup in two types of behavior, two groups
for which these behaviors can be collapsed, as will be
explained hereafter.
To further analyze this change in the mixing dynamics
we define ∆d as the average relative distance of particles
pairs. These pairs where at time t = 0 s separated by a
distance ∆ds < 0.028 cm, which corresponds to 2 particle
diameters. In this average only the first 600 particles
are considered corresponding to the first two layers. The
reason for this is that the front where particles disperse
from the top section travels slower for higher viscosity
and the amount of particles that contribute to the aver-
aged particle pair distance would depend on the speed
the front travels with. Further more the dynamics in the
cell also depend on the height from the bottom of the
cell and coarsen in time. By taking the average over the
first 600 particles it can be ensured that all the particles
almost start moving instantaneously. In the progress of
the simulation these first particles can be considered as
tracers which are subjected to the dynamics governed by
all particles. The analysis stops when the first particle
has reached a distance of 0.14cm to the base of the cell
corresponding to 10 particle diameters. The average
distance between the particle pairs grows in time while
the particles are falling through the fluid as shown in
the bilogarithmic Figs. 9 and 10. The pair separation
can be classified into two regimes. The first regime for
lowly viscous fluids with 0.018kPa · s ≤ µf ≤ 0.073 kPa·s
shows a non-hydrodynamic or ballistic behavior where
the exponent is close to b = 1.0 in a power law fit
of ∆d = atb. The particles in this regime fall with
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a constant relative velocity. In the second regime for
highly viscous fluids with 0.128kPa ·s ≤ µf ≤ 4.418 kPa·s
the particles pairs follow a initial diffusive separation
with an exponent close to b = 0.5 before they enter to
turbulent-dispersive behavior with an exponent close to
b = 1.5. Interestingly The later exponent of b = 1.5
corresponds to the Richardson law that predicts an
exponent of b = 1.5 for particle pair separation in fully
developed turbulence [20–24]. Turbulent behavior is
observed although the numerical model only relies on
the relative velocity of the fluid with respect to the
particles at low Reynolds number neglecting the fluid
inertia. The motion of the grains and fluid together
however might correspond to larger Reynolds numbers
and display turbulent characteristics.

IV. CONCLUSION

As a conclusion we can state that the compressibility of
the interstitial fluid affects the dynamical patterns much

less than the viscosity. Under the conditions discussed in
Sec. III B, that the skin depth of the pressure is larger
than the system size and that the weight of the grains
does not lead to a significant compression of the fluid in
the empty zone of the cell, the compressibility can be ne-
glected. This results in an increase of the computational
speed by a factor of around 20 for the present model from
480 hours to 24 hours on a cluster with 8 nodes. In the
second part of this paper the viscosity was proven to have
a strong effect on the dynamics of the particles. In terms
of the mixing behavior the increase of the additional path
length due to the increase of the fluid viscosity will re-
sult in a better mixing of the particles the more viscous
the fluid is if internal friction is negligible. Depending on
the fluid viscosity the initial dynamics could be classified
into two regimes. For low viscosities ballistic particle pair
separation with ∆d = at1.0 was measured. For high fluid
viscosity we observed initially diffusive pair separation
with ∆d = at0.5 with a cross-over to turbulent-dispersive
particle pair separation with ∆d = at1.5.
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