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Modeling the formation of stylolites in sedimentary rocks.

A. Rolland1, R. Toussaint1, P. Baud1, J. Schmittbuhl1, N. Conil2, D. Koehn3, F.

Renard4, J.P. Gratier4

Abstract. Stylolites are ubiquitous pressure solution seams found in sedimentary rocks.
Analyzing the scaling properties of their height over their average direction shows that
at small scale, these are self affine srufaces with a Hurst exponent around 1, and at large
scale, the they follow another self affine scaling with Hurs exponent around 0.5. We present
how the dissolution reaction rate is affected by the deviation between the principal stress
axis, and the local interface between the rock and the soft material in the stylolite. The
free energy entering in the dissolution reaction kinetics is expressed from the surface en-
ergy term, and via integration from the stress perturbations due to these local misalign-
ments. The resulting model for the interface evolution is shown, when the largest prin-
cipal stress is normal to the interface, as for a stylolite, to consist of two stabilizing terms,
a surface energy one dominant at small scale, and an elastic one dominant at large scale.
Integrating in the model the presence of small scale heterogeneities associated to the rock
grains, leads to the formulation of a langevin equation for the dynamic surface evolu-
tion model. This equation leads to saturated surfaces obeying the two observed scaling
laws. Studying it analytically and numerically, one shows that the cross over length sep-
arating the two scaling regimes directly depends on the imposed far field stress magni-
tude. Hence, this method proposes the basis of development of a paleostress magnitude
marker. The method is next applied to stylolites found in the limestones from the logs
of Bure-sur-Meuse. The practical determination of paleostresses is illustrated on this ex-
ample.

1. Introduction

In recent papers, stylolites are presented as fossilized sig-
natures of the stress field [Ebner et al., 2008, 2010a]. These
geologic structures are rough pressure-solution features that
sprawl over the micrometric size, sometimes up to hundredth
of meters. Bathurst [1987] describes stylolites as serrated in-
terfaces between two rock masses with an amplitude greater
than the diameter of the transected grains giving a sutured
appearance. He makes a difference with dissolution seams
or ’flaser’ which are smooth, undulating, lacking in sutures
and fitting around grains instead of cutting through them.
Stylolites are most often found in carbonates [Stockdale,
1922, 1926, 1936, 1943; Dunnington, 1954; Bushinskiy , 1961;
Park and Schot , 1968; Bathurst , 1971; Buxton and Sibley ,
1981; Railsback , 1993] but also in sandstones [Young , 1945;
Heald , 1955], shales [Wright and Platt , 1982; Rutter , 1983],
cherts [Bushinskiy , 1961; Iijima, 1979; Cox and Whitford-
Stark , 1987] and sometimes in coal [Stutzer , 1940]. Sty-
lolites are flat at the first order, usually perpendicular to
the maximum principal stress at the time of their forma-
tion (weight of the overburden or maximum tectonic stress).
They are normally filled with insoluble material such as clay
particles, oxides and organic matters. They are divided in
two groups according to their orientation with respect to the
bedding of the surrounding rock or to the orientation of their
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’teeth’ with respect to the mean plane of the stylolite. The
stylolites of the second group are called ’slickolites’ [Ebner
et al., 2010a]. These develop when there is a preferential
plane for their growth (bedding or crevice). In this case, the
stress is not perpendicular to the mean plane of the stylo-
lite [Stockdale, 1922], but the teeth sides are subparallel to
the maximum principal stress axis. The first group shows
two types of orientation: sedimentary stylolites which are
parallel to the bedding plane and formed under the litho-
static pressure and tectonic stylolites which are oblique or
even perpendicular to the bedding, depending on the max-
imum tectonic stress. The teeth orientation is in all cases
an indicator of the direction of the major principal stress.
Benedicto and Schultz [2010] investigated the topography of
stylolites (along-strike trace length, maximum and average
amplitudes) from the damaged zone of the Gubbio normal
fault zone in central Italy. They showed that the amount
of contractional strain accommodated by stylolites as well
as their length and their number increase according to the
topography parameters. Analysis of cores from boreholes
reveal also an increase in stylolite abundance with depth
[Lind , 1993]. Fabricius and Borre [2007] compared forma-
tion of chalk from boreholes on the Ontong Java Plateau and
in the central North Sea. They showed that the burial stress
and the temperature play distinct roles in the burial diagen-
esis and porosity development of chalk. Pressure dissolution
and physical compaction are controled by the burial stress
while the temperature controls recrystallization and cemen-
tation. Moreover Lind [1993] suggests that mineralogical
anomaly is an initializing factor in stylolite formation such
as burrows, shale clasts or flaser structures.

Only few papers report experiments about stylolites for-
mation. Indeed, they are inherently difficult to reproduce
as the kinetics of pressure-solution processes is very slow
[Rutter , 1976]. Field studies [Park and Schot , 1968; André,
2003] suggest that many parameters play an important role
in their development such as confining pressure, deviatoric
stress, fluid pressure, temperature, shape and assemblage of
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grains, anisotropy of minerals, rates of solution, etc.. Exper-
iments were conducted either on aggregates [Cox and Pater-
son, 1991; Renard et al., 2001; Gratier et al., 2005] or with
indenter techniques [Gratier and Guiguet , 1986; Gratier ,
1993; Gratier et al., 2004; Dysthe et al., 2002; D.K. et al.,
2003]. Dysthe et al. [2002]; D.K. et al. [2003] used an inden-
ter technique in which a Sodium Chloride crystal was kept
in contact with a piston at a given pressure and tempera-
ture for several months. A fluid at compositional equilib-
rium with the cryst is trapped between the sample and the
indenter. The contact was seen to evolve due to pressure
solution during the indentation, and an Andrade creep law
was shown to control the indentation rate. The evolving
microstructures in the contact seemed different from stylo-
lites. Gratier et al. [2004] used a similar technique in which
a sample of Bure argillite was kept in contact with a pis-
ton, with a saturated brine in the contact, at an imposed
pressure and temperature for several months.No evidence
of pressure-solution was observed in this case. Karcz et al.
[2008] loaded a halite cone-shaped indenter against a flat
silicate surface immersed in an undersaturated brine. Using
confocal microscopy techniques, they observed that the evo-
lution of the system is dictated by an interaction between
two deformation mechanisms: undercutting dissolution re-
ducing the area of the contact and plastic flow increasing it.
Recently, similar experiments were carried out with a brine
at chemical equilibrium with the crystal Laronne Ben-Itzhak
et al. [2012a], and emerging evolving islands and channels
were observed in the contact. Such island and channels
structures was first observed in the contacts during experi-
ments on aggregates Schutjens and Spiers [1999]; Den Brok
and Spiers [1991]).

Other experiments on aggregates were carried out by
Gratier et al. [2005]. They loaded layers of fine quartz sand
grains. The experiment lasted several months at 350 C,
under 50 MPa of differential stress and in presence of an
aqueous silica solution. Microstylolites were observed for
the first time in the laboratory to be created at the stressed
contacts between the quartz grains. Den Brok and Morel
[2001] loaded elastically K-alum crystals at a controled tem-
perature and in a saturated K-alum solution. A hole was
drilled in the middle of the crystals to provide an elastic
strain gradient. They observed macroscopic etch grooves on
the originally smooth free surfaces of the soluble crystals
which disappear when removing the stress. Koehn et al.
[2004] stressed crystals of NaClO3 in a NaClO3 solution at
room temperature. Parallel dissolution grooves developed
on their free surface in a 1D geometry to a 2D geometry with
the coarsening of the pattern. The pressure-solution pro-
cess slow down or stopped progressively with the increasing
concentration of the solution during the experiment. Re-
nard et al. [2001], studied chemical compaction of aggre-
gates of halite (salt) mixed with clay. They showed that
clay particles enhance pressure-solution. Moreover, Renard
et al. [1997] studied the effect of clay on clay-rich sandstones.
Pressure-solution is enhanced by clay because a thick film is
preserved between clay particles contrary to between quartz
grains. The process is limited by diffusion at great depths,
thus at high temperature, as the water film between grains
is thin. At low depths, the kinetics limits the process.

The clay particles effect on pressure-solution was recently
simulated in numerical modeling. Aharonov and Katsman
[2009] used the two-dimensional Spring Network Model to
study the stylolites formation in a medium with a uni-
form clay distribution. They showed that clay plays a role
of enhancing pressure-solution and that stylolites propaga-
tion is possible only when both pressure-solution and clay-
enhanced dissolution operate together. Koehn et al. [2007]
developed a new discrete simulation technique that repro-
duces successfully the roughening of stylolites from a prefer-
ential existing surface with no clay. This model is based on
molecular dynamics, with a dissolution speed dependent on

the local free energy, including both stress dependent terms
and surface energy terms. Two different spatial regimes are
observed to arise from this modeling: a small-scale regime
where surface energy is dominant with significant fluctua-
tions of the roughness and a large-scale regime where elastic
energy dominates. The dependence on the cross-over scale
between these two regimes on the imposed stress has been
recently investigated numerically Koehn et al. [2012]. This
model shows that the growth of the stylolite teeth follows
the main compressive stress direction. In this model, the
nature and structure of the small scale disorder in the disso-
lution properties of grains has been systematically analyzed
Ebner et al. [2009]. The way in which this disorder reflects
the compositional nature of the grains around a stylolite
was investigated through detailed microstructural analysis
Ebner et al. [2010b].

Stylolites are localised features for which deformation is
purely compactant as for compaction bands [Mollema and
Antonellini , 1996; Baud et al., 2004; Katsman et al., 2006b].
Stylolites and compaction bands development was modeled
as anticracks or anti-mode I fracture [Fletcher and Pol-
lard , 1981; Rispoli , 1981; Mollema and Antonellini , 1996].
Fletcher and Pollard [1981] suggest that the rate of pressure-
solution is only a function of the normal stress. They ob-
served an elliptic dissolution pattern i.e. more dissolution
in the central part of the stylolites than at the tips. The
higher stress concentration at the top of the teeth is respon-
sible of this localised high rates of dissolution. With these
observations they proposed an analogy between propagation
of stylolites and propagation of mode I fractures. The stress
concentrates at the tips and is perpendicular to the stylo-
lite. However, in their simulations of localised volume loss
for defects as stylolites, Katsman et al. [2006a] show that the
stress is not as enhanced at the tips of the stylolites as for
cracks, and depends on the amount of volume removed: they
showed that the stress perturbation around a stylolite with a
constant volume reduction is analogous to the one around a
dislocation, rather than one of a crack. In later models Kats-
man et al. [2012], if accumulation of dissolution is allowed
for in the center of a stylolite, due for example to a positive
feedback for the reaction rate induced by clay accumulation,
the dissolution profile can become inhomogeneous in mod-
els, and then another type of stress enhancement, closer to
a crack one, can be observed.

Many studies were conducted on the morphology of sedi-
mentary stylolites [Renard et al., 2004; Brouste et al., 2007;
Ebner et al., 2008, 2010a]. Morphology analysis can be done
on 1D profiles or 2D opened surfaces. It consists on studying
a stylolitic profile or surface variations (standard deviation,
height differences, power spectrum, average wavelet coeffi-
cient spectrum, etc.) over different scales [Schmittbuhl et al.,
1995, 2004; Renard et al., 2004]. These analysis reveal two
distinct scaling regimes that could be described by power
laws. The power laws are function of a roughness exponent
also called Hurst exponent inferred to be 1 and 0,5 for small
and large-scale respectively [Renard et al., 2004; Schmittbuhl
et al., 2004; Brouste et al., 2007; Ebner et al., 2008]. The
two regimes are separated by a cross-over length typically
around 1 mm [Renard et al., 2004; Schmittbuhl et al., 2004].
For sedimentary stylolites, the two dimensional (2D) anal-
ysis of the surface of stylolites, or the analysis of profiles
extracted at different directions, in most cases, does not
show any sinificant inplane anisotropy, reflecting the fact
that horizontal stresses are isotropic.

Ebner et al. [2010a] observed that tectonic stylolites pro-
files show the same geometric attributes as sedimentary
ones. Two different regimes are also observed with Hurst
exponent around 1 and 0,5 for small and large-scale respec-
tively. However, for tectonic stylolites, the 2D analysis re-
vealed an anisotropy of the cross-over length which varies
with the direction in the plane of the stylolites. Ebner et al.
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[2010a] explain this anisotropy, i.e. the variation of the
cross-over with inplane direction by the way of formation
of the stylolites in an anisotropic inplane stress: the vertical
and inplane horizontal stress components are significantly
different.

Interfaces between solid and fluids are related to models
of stylolitization. In the case where a solid in contact with a
fluid is stressed, an instability due to pressure solution has
been shown theoretically to exist, named the Asaro Tiller
Grienfeld (ATG) instability Renard et al. [2004]. In mod-
els of dissolving surfaces with a stress imposed to a solid in
contact with a fluid at chemical equilibrium, this instabil-
ity leads to the growth of initial large scle modulations of
the surface, with a wavelength selection obtained though a
fastest growing mode. The basic equation depends on the
particular boundary conditions. e.g., when two solids with
different elastic properties are in contact and submitted to
a stress, the interface can undergo a fingering instability led
by the contrast between the free energies in the two solids
Anghuleta et al. [2008]; Angheluta et al. [2009, 2010]. Tech-
nically, the stability analysis can be performed theoretically
from expressions for the kinetics using local free energy cri-
teria for the reaction rate Renard et al. [2004]; Schmittbuhl
et al. [2004], or global ones Bonnetier et al. [2009]; Anghuleta
et al. [2008]. Depending on the boundary conditions, this
situation is also found to be unstable for perturbations ex-
ceeding a certain wavelength, leading to fingering (as e.g.
with large stress tangential to a fluid interface Renard et al.
[2004], or a stress normal to fluid interfaces and lateral pe-
riodic boundary conditions Bonnetier et al. [2009]). With
other boundary conditions, the surface energy and elastic
interactions are found to stabilize the interfaces, which are
only destabilized by material noise due to heterogeneities
Schmittbuhl et al. [2004]; Koehn et al. [2007]. We will ar-
gue in details in the discussion section about the different
possibilities applied to the geometry of stylolites, and the
fact that stylolites displaying self affine scaling laws for their
height at large scale are compatible with the stabilizing char-
acter of elastic forces at large scale.

The existence of two scaling regimes for sedimentary sty-
lolites has been shown in Schmittbuhl et al. [2004]. A brief
theoretical derivation has been performed in this work, that
showed that the cross over length between the two scaling
regime isexpected to be dependent on the stress acting on
the stylolite during its formation. It was then concluded
that stylolite morphology can be used as a paleostress mag-
nitude indicator. In the current manuscript, we will derive
the details of the computation leading to this link between
paleostress magnitude and the crossover length between the
two scaling regime. We will thus establish the precise link
between formation stress and crossover magnitude. This
will be performed in section 2, by a perturbative analysis
of the elastic energy around an interface slightly wavy and
unaligned with one of the principal stresses. We will then
show in section 3 that the mechanics and chemistry allows
to relate the small scale behavior and large scale behavior
of stylolites to known models, with Hurst exponents corre-
sponding to the observed ones. We will eventually show on
natural examples in the Bure-sur-Meuse carbonates, how the
predicted scaling regimes can be found, and how to recon-
struct the magnitude of paleostress at the time of formation
of the stylolites, from the determination of the crossover
length.

Since this work was first shown in Schmittbuhl et al.
[2004], independent determinations of the link between cross
over length scales and the formation stress were obtained:
one on field studies Ebner et al. [2008], where the stress de-
rived from the application of this model, and the one inferred
from the stylolite depth, were found to be in accordance.
Another one, based on numerical simulations of molecular
dynamics Koehn et al. [2012], also lead to the same relation
between imposed stress and crossover scale.

2. Continuous elastostatic model for stylolite
formation

The morphology of stylolites arises from the disorder
present in a rocks material properties, expressed in the pres-
sion dissolution process.

This disorder is spatially attached to the grains consti-
tuting the rock. To understand the impact of this disor-
der on the chemico mechanical coupling, we will consider
the following simplified geometrical scenario: the stylolite is
modeled as an elongated fluid pocket, enclosed between two
rough surfaces. The stress in the rock, far away from this
pocket, is referred to as σ

0. The direction of the largest prin-
cipal stress axis is referred to as the z-axis. The large scale
average direction of both embedding surfaces is assumed to
be perpendicular to z, as observed normally for stylolites.
In order to describe elongated fluid pockets, we simplify the
geometry as a pocket embedded between two contactless sur-
faces of infinite extent. Contacts between these two surfaces
can in principle modify the geometry of the resulting disso-
lution surface, but they are assumed to be sufficiently loose
in a real stylolite, so that the main morphological results
are not affected by them. Notably, we will see that the low-
scale and large scale self affine character of the dissolution
surfaces, together with the two associated roughness expo-
nents, are well reproduced with the present assumptions, i.e.
that the current model leads to the experimentally oberved
exponents [Schmittbuhl et al., 2004].

In order to have better statistics on the morphology of
the surfaces studied, the model is assumed to be symmetric
under translation along a y-axis, lying within the average
stylolite plane. We describe therefore a two dimensional
model. This restriction will allow to describe a larger range
of scales at identical same numerical cost, and to resolve nu-
merically the self-affine character of the resulting pressure
dissolution surfaces over a larger number of decades. Note
however that no particular difficulty is associated with tak-
ing into account the third dimension, which can be included
straightforwardly using the same approach. Since we first
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neglect the solid contacts between the opposite surfaces, the
dissolution process happening on both surfaces (figure 1 can
be described by the same model, describing the dissolution
of a solid half-plane in contact with a fluid half-plane. The
basis of the model consists in assuming mechanical equilib-
rium throughout the system, and in relating the dissolution
rate to the stress tensor, and to the area of the interface per
unit volume.

2.1. Force perturbation related to the mechanical

equilibrium along the fluid-solid interface

First, the mechanical equilibrium at the solid-fluid inter-
face (figure 2) is expressed:

The pressure in the fluid is homogeneous. Since the fluid
pocket transmits all the load through it, the fluid pressure
is equal to the largest principal stress in the solid, far from
the pocket:

p = −σ0
zz (1)

where by convention, negative stresses represent compressive
forces. This equation can be obtained, e.g., by considering
the integral of the local stress field σ along an elongated
rectangular boundary (dashed line in figure 1).

Next, the mechanical equilibrium is expressed locally,
along the interface. The local stress σ is separated between
the far-field asymptotic value σ

0 and a perturbation gener-
ated by the irregular character of the interface, σ

1:

σ(x) = σ
0 + σ

1(x) (2)

The unit vector n̂ normal to the surface pointing towards the
fluid, is assumed to be close to the principal stress axis. The
interface is described as a monovalued function z(x), and we
assume slopes of order ε, i.e. that|∂x(z)| ∈ O(ε) � 1.

The following derivation will be done within such small-
angle deviation from a straight surface, and will thus be valid
for small surface slopes. The model derived is expected to
describe well the onset of the stylolite formation from a flat
surface, and we expect it also to hold to describe the evo-
lution of large wavelength modes, since the aspect ratio of
such modes (ratio of the amplitude over the wavelength) will
be found to be small, corresponding to small effective slopes
at large wavelength.

In this limit, requiring n̂ · (1, ∂xz)T = 0, and n̂2 = 1, we
find to leading order in ε that

n̂ = ẑ − (∂xz)x̂ + O(ε2) (3)

The far field stress admits x̂ and ẑ – the units vectors along
the z and x axis – as principal directions, i.e.

σ
0 = σ

0
xxx̂x̂ + σ

0
zzẑẑ (4)

For a stylolite, the most compressive stress axis is normal to
the average fluid pocket direction, i.e.

|σ0
zz| > |σ0

xx| (5)

We will see straightforwardly that this has strong implica-
tions on the stability of the surface patterns emerging from
the dissolution process.

We define the far field applied deviatoric stress as

σ
0
s = (|σ0

zz| − |σ0
xx|) = (σ0

xx − σ
0
zz) (6)

The local mechanical equilibrium is expressed at the fluid-
solid interface, i.e.

σ · n̂ = −pn̂ (7)
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Figure 3. Local mechanical equilibrium along the fluid-
solid interface

which together with Equations (1-6), leads to the following
expression for the force perturbation related to the curved
character of the interface:

δf(x) = σ
1(x) · n̂ =

−pn̂ − σ
0 · n̂

= σ
0
zz[ẑ − (∂xz)x̂] − σ

0
zz ẑ + σ

0
xx(∂xz)x̂

= (σ0
xx − σ

0
zz)(∂xz)x̂

= σ
0
s(∂xz)x̂ (8)

This force balance is illustrated in Figure 3.

2.2. Chemico-mechanical coupling

Next, we have to express the chemico-mechanical cou-
pling. The dissolution rate of the solid into the fluid, or
dissolution speed normal to the solid/fluid interface, is to
first order proportional to the chemical potential ∆µ of the
chemical product dissolving:

v = m∆µ (9)

where

m = k0Ω/RT (10)

is the mobility of the dissolving specie [Kassner et al., 2001].
Here, R = 8.31 J.mol−1.K−1 is the universal gas constant, T
the temperature in Kelvins, k0 is a dissolution rate, which
can be assessed experimentally, and Ω is a molar volume.
For example, for calcite, Ω ' 4 · 10−5m3.mol−1, and for a
dissolution of calcite in water, k0 ' 10−4mol.m−2.s−1. The
chemical potential drop from the solid to the fluid state, is

∆µ = ∆Ψs + Ω∆Pn + Ωγκ (11)

In the above, Ω is a molar volume. Considering a solid
state at a given pressure and elastic free energy, in chemical
equilibrium with the fluid, ∆Ψs and ∆Pn are defined respec-
tively as the change in Helmholtz free energy per mole and
the change in stress normal to the interface, with respect
to this state. The last term represents the surface energy,
with κ = ∂xxz the surface curvature (the inverse of the ra-
dius of curvature), and γ the surface tension between the
solid and fluid phase. Neglecting effects due to temperature
variations, and assuming that the fluid composition is in
chemical equilibrium with a solid at normal pressure p and
stress σref , we have ∆Pn = 0 and

∆Ψs + Ω∆Pn = Ω∆ue, (12)

where

ue = [(1 + ν)σijσij − νσkkσll]/4E (13)
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is the elastic free energy per unit volume, with E the Young
modulus and ν the Poisson ratio of the elastic solid, and

∆ue = ue(σ) − uref
e (14)

To take into account the dissolution speed variations asso-
ciated to the morphology, we develop the dissolution rate to
leading order as

v = v0 + v1 (15)

and from the above,

v0 =
k0Ω

2

RT

(

[(1 + ν)σ0
ijσ

0
ij − νσ0

kkσ0
ll]

4E
− uref

e

)

=
k0Ω

2

RTE
(αp2

0 − αrefp2
ref ) (16)

where the following geometrical factor is computed assum-
ing σ0

xx = σ0
yy = −p0 + σs/3, and σ0

zz = −p0 − 2σs/3:

α =
9(1 − 2ν) + 2(1 + ν)σ2

s/p2
0

12
(17)

with a similar expression for αref characterizing the fluid
chemistry, i.e. as function of the pressure and shear stress
pref and σref

s of the reference state in chemical equilibrium
with the fluid.

Typically, for a limestone with a Young modulus of
E = 8 · 1010 Pa, under pressures around p0 ' 107 Pa cor-
responding to a few hundred meters depth in sedimentary
rocks, and for a fluid with a chemical composition in equilib-
rium with a surface limestone, the order of magnitude of the
dissolution speed of such a calcite/water interface is found
as:

v0
n ' 10−6 to 10−5 m.year−1

2.3. Consequences for the stability of the dissolution

process

From the local mechanical equilibrium, and the nature
of the chemico-mechanical coupling described above, some
important considerations can be made about the stability or
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Figure 4. Surface normal to the largest stress axis: sta-
ble case

σFluid

Solid

z

z

x

|σ  |>|σ  |
force

zx
v low

v large

Unstable dissolution process

p=

perturbation

Figure 5. Surface tangential to the largest stress axis:
instable case, Azaro-Tiller-Grinsfeld instability

instability of the shape of dissolution surfaces, depending on
the orientation of the interface with respect to the far-field
stress.

Indeed, we have shown above that the force perturbation
arising from the mismatch between the interface orientation,
and the principal axis of the far field stress tensor, x̂, can
be expressed from Equation (8), as

δ f(x)=σ0
s(∂xz)x̂

This holds independently of the relative magnitude of the
principal stresses, σxx and σzz. If the largest principal stress
is tangential to the interface – which is not the case for sty-
lolites –, σ0

s < 0, and δf(x) · x̂ has a sign opposite to the
interface slope ∂xz. Such tangential force perturbation is
concentrated on the points lying ahead of the average dis-
solution front – on the valleys of this figure, where the dis-
solution propagates downwards–(figure 5). Thus, the elastic
forces will concentrate stress in this points, and the free en-
ergy will be higher there, leading to an increased dissolution
speed for the points lying already ahead of the average front.
The opposite conclusion can be done for the points lying be-
hind of the average front, in the crests of Figure 5, where
the dissolution will be slowed down, thus leading them fur-
ther from the average front. So, the points lying out of
the average dissolution plane will tend to depart further to
the average position, and the long range elastic forces are a
destabilizing force in this situation. On contrary, the surface
tension tends to lower the interface area, and to flatten the
interface, i.e. stabilizes the process.

The competition between the elastic long-range elastic
forces and the surface tension short range stabilizing forces
lead to an interface instability known as the Azaro-Tiller-
Grinsfeld instability. The wavelength growing fastest in this
case is determined by the balance between this long-range
destabilizing, and short range stabilizing effects. This in-
stability arising in stressed solids has been studied theoreti-
cally [Misbah et al., 2004; Asaro and Tiller , 1972; Grinfeld ,
1986], and observed experimentally [Den Brok and Morel ,
2001; Koehn et al., 2004].

Conversely, if the largest principal stress lies perpendicu-
lar to the interface, as is the case for stylolites, σ0

s > 0, and
δf(x) · x̂ has the same sign as the interface slope ∂xz. Such
tangential force perturbation is concentrated on the points
lying behind the average dissolution front – on the crests
of this figure, where the dissolution propagates downwards–
(figure 4). Thus, the elastic forces will concentrate stress in
this points, and the free energy will be higher there, leading
to an increased dissolution speed for the points lying behind
the average front. The opposite conclusion can be done for
the points lying ahead of the average front, in the valleys of
Figure 4. So, the points lying out of the average dissolution
plane will tend to come back to the average position, and
the long range elastic forces are a stabilizing force in this
situation.

Figure 6. Expected stability or instability of the disso-
lution front around a trapped fluid pocket
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Here as well, the surface tension stabilizes the process.
Consequently, since both the long-range elastic and the

short range surface tension forces are stabilizing forces, if
the solid properties are modeled as purely homogeneous ones
(i.e. a homogeneous elastic solid, with homogeneous disso-
lution rate properties), this model predicts that any initial
non-plane surface will tend to flatten after some time.

So, in order to model the morphogenesis of stylolites,
which are rough surfaces normal to the largest stress axis,
the disorder attached to material properties has to be taken
into account.
2.3.1. Consequence on initial evolution of trapped
fluid pocket

The above arguments show that in summary, an elemen-
tary bump of a flat surface disappears for σs > 0, or grows
for σs < 0. Qualitatively, if this argument on the stability
of surfaces depending on their orientation on the principal
stress axis extends for more local orientations along trapped
fluid pockets, one should observe the following: for the sides
of a fluid pocket lying tangentially to the largest stress, these
should develop intsable grooves penetrating into the solid,
similrly to the ATG instability case. On contrary, the sides
normal to the largest stress direction should remain rela-
tively flat, apart from the fluctuations due to the disorder.
This small variations along the surfaces normal to the prin-
cipal stress axis, and penetration in grooves of characteris-
tic wavelength the rock in the directions along the weakest
stress, should lead to the development of elongated struc-
tures, and merge initially separated fluid pockets (or clay
enriched pockets). This qualitative mechanism is illustrated
on Fig. 6. This expectation of qualitative evolution is indeed
compatible with the mechanism development of anti-cracks,
numerically obtained by [Koehn et al., 2003]. The experi-
mental grooves observed along the free surface on the sides
of a fluid filled cylindrical pocket, by [Den Brok and Morel ,
2001], also diplayed this tendancy.

2.4. Expression of the dissolution speed perturbation

as function of the interface shape

To take into account the disordered nature of the solid, we
assume that the material properties, attached to the grains,
vary in a random and spatially uncorrelated way. For exam-
ple, the dissolution constant k is modeled as an average term
k0, plus a spatially varying one of zero average, η(x, z) · k0:

k = k0(1 + η(x, z(x))) (18)

The random variable η is a quenched disorder without spa-
tial correlations, and is characterized by its average < η >=
0, and its variance < η2 >, assumed small to keep small
local slopes. From Equations(9,15), the dynamics of the
dissolving interface z(x, t) can be described as

∂tz(x, t) = −v0 − v1(x, t) (19)

with a homogeneous dissolution speed v0 given by Equation
(16), and a deviation v1 of the dissolution speed with respect
to the average dissolution speed v0, expressed as:

v1 =
k0Ω

2

RT

(αp2
0 − αrefp2

ref )

E
η(x, z(x))

+
k0Ω

2

RT
γ∂xxz(x)

+
k0Ω

2

RT

(

[(1 + ν)σ0
ijσ

1
ij − νσ0

kkσ1
ll]

2E

)

(20)

where σ1 is the stress perturbation generated in the solid
by the surface distribution of tangential force perturbations
δf(x) associated to the curved character of the interface,
derived in Equation (8).

The first term is a quenched disorder term leading the
roughnening of the interface, the second one is a stabiliz-
ing quadratic short ranged term arising from the interfacial
tension. The last term can be expressed via a nonlocal ker-
nel from the shape of the interface z(x), by integrating the
elastostatic equations in the solid half-plane.

2.5. Detailed form of the elastic long-range interaction

kernel

The stress perturbation induced by the force distribution
δf(x) = σ0

s(∂xz)x̂ exerted along the surface can be deter-
mined via the Green function method: the displacement in-
duced by an elementary force x̂ exerted at the origin (0, 0, 0)
on a semi infinite solid, is, according to Landau and Lifschitz
[Landau and Lifchitz , 1986]:

ax (x, y, z) =
1 + σ

2πE

{

2(1 + σ)r + z

r(r + z)
+

(2r(σr + z) + z2

r3(r + z)2
x2

}

ay (x, y, z) =
1 + σ

2πE

{

2r(σr + z) + z2

r3(r + z)2
xy

}

az (x, y, z) =
1 + σ

2πE

{

(1 − 2σ)x

r(r + z)
+

zx

r3

}

(21)

From this expression, the associated strain (at points differ-
ent from the origin) is obtained as

εe
ij =

1

2
(∂iaj + ∂jai) (22)

and the associated stress as

fij(x, y, z) =
E

1 + ν
(εe

ij +
ν

1 − 2ν
εkkδij) (23)

The stress associated to the point force x̂ exerted on the
surface of normal ẑ at the origin, is equal at the origin itself
to x̂ẑ + ẑx̂.

Since the model treated here is invariant by translation
along y, the force perturbation δf(u) = σ0

s(∂uz)(u)x̂ is ex-
erted at any y ∈] − ∞,∞[ and the resulting stress on the
surface, at (x, y, z = 0), is solely dependent on x and can be
expressed, by linearity of the elastostatics equations, as

σ1
ij(x) = σ0

s · p.p.[

∫

∞

x′=−∞

du (∂uz)(u)

∫

∞

y=−∞

fij(x − u,−v, 0)dv]

+σ0
s(∂xz)(x)(δixδjz + δizδjx) (24)

where p.p. refers to the principal part of the integral. Tak-
ing the derivatives of the elementary displacement field in
Equation (22), summing to obtain the associated stress, and
integrating along the y−axis, comes

∫

∞

y=−∞

fij(x,−v, 0)dv = −
2ν

πx
(δixδjx + δiyδjy) (25)

and thus,

σ1(x) = −
2νσ0

s

π
· p.p.[

∫

∞

x′=−∞

du
(∂uz)(u)

x − u
](x̂x̂ + ŷŷ) (26)

+σ0
s · (∂xz)(x)(x̂ẑ + ẑx̂)

Together with the expression

σ0 = −(p0 − σ0
s/3)(x̂x̂ + ŷŷ) − (p0 + 2σ0

s/3)ẑẑ (27)
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the elastic energy perturbation associated to the interface
deformation can be computed as

u1
e =

[(1 + ν)σ0
ijσ

1
ij − νσ0

kkσ1
ll]

2E
(28)

=
2ν[(1 − 2ν)p0 − (1 + ν)σ0

s/3]

πE
σs

0 ·

p.p.[

∫

∞

u=−∞

du
(∂uz)(u)

x − u
]

2.6. Dynamic equation for the dissolution interface

From Equations (19, 6, 28), the equation ruling the inter-
face dissolution dynamics is ∂tz(x, t) = −v0 − v1(x, t), with
v0 given by Equation (16), and:

RT

k0Ω2
v1 =

(αp2
0 − αrefp2

ref )

E
η(x, z(x))

−γ∂xxz(x)

+β
p0σ

0
s

E
·

p.p.[

∫

∞

u=−∞

du
(∂uz)(u)

x − u
] (29)

with a geometrical factor

β = [2ν(1 − 2ν) − (1 + ν)σs
0/p0]/π (30)

A dimensionless form of this equation can be obtained by
adopting length and time units as

L∗ = γE/(βp0σs) (31)

τ = (L∗)2RT/(γk0Ω
2) (32)

and defining the dimensionless variables, in the reference
frame moving at the average velocity −v0, as

z′ = [z + (v0t)]/L∗ (33)

x′ = x/L∗ (34)

t′ = t/τ (35)

and the reduced quenched noise as

η′(x′, z′(x, t) − v0t/L∗) = [(αp2
0 − αrefp2

ref )/(βp0σs)]η(x, z(x, t))

(36)

The dimensionless stochastic equation for the pressure dis-
solution process is then:

∂t′z
′(x′, t′) = (37)

η′(x′, z′(x′, t′) − v0τt′/L∗) + ∂x′x′z′

−p.p.[

∫

∞

u=−∞

du
(∂uz′)(u)

x′ − u
] (38)

At large average dissolution speed, the term v0τt′/L∗ dom-
inates quickly over z′, and the noise is annealed – mainly
dependent on time, rather than on space. On contrary, for
processes sufficiently slow such as the roughness of the sur-
face extends over several grains of disorder, i.e. such as the
variation of η′ arising from z′(x′, t′) dominates over the one
coming from the average dissolution front position in the
solid, v0τt′/L∗, the noise can be considered as quenched, i.e.
in first order, the noise dependence is mainly η′(x′, z′(x′, t′)).
This is the case of interest here, and the dynamic equation
can then be cast as

∂t′z
′(x′, t′) = (39)

η′(x′, z′(x′, t′)) + ∂x′x′z′ − p.p.[

∫

∞

u=−∞

du
(∂uz′)(u)

x′ − u
](40)

Alternatively, in arbitrary spatial units `, this can also be
written

∂tz(x, t) = η′′(x′, z′(x′, t′)) + ∂xxz

−
`

L∗

∫

dy
∂yz

x − y
(41)

with L∗ = γE/(βp0σs), and τ = `2RT/(γk0Ω
2): time unit.

2.7. Small and large scale behavior of the model

In the small scale limit, for scales l � L∗, elastic inter-
actions can be neglected in Equation (41), and this model
reduces to a Laplacian description:

∂tz
′(x, t) = ∂xxz′ + η(x, z′(x)) (42)

This is known as the Edwards Wilkinson model [Edwards
and Wilkinson, 1982], modified with a quenched random
noise. This system has been studied in the literature,
and leads to the growth of self-affine surfaces of roughness
ζ ∼ 1.2 [Roux and Hansen, 1994], in agreement with the ob-
servation of natural stylolites (ζ ∼ 1.1) [Schmittbuhl et al.,
2004].

Conversely, in the large scale limit, i.e. for scales l � L∗,
surface tension can be neglected and this Equation (41) re-
duces to a mechanical regime:

∂tz
′(x, t) = −

`

L∗

∫

dy
∂yz

x − y
+ η(x, z′(x)) (43)

Once again, this model is isomorphic to known models for
the propagation of an elastic line on a disordered pinning
landscape, or for mode I fracture front in a disordered solid.
This leads to the growth of self affine surfaces of roughness
ζ ' 0.5 [Tanguy et al., 1998].

Thus, the model derived above is expected to lead to the
growth of dissolution surfaces with self affine charateristics
at small scales with ζ1 ∼ 1.2, and a cross over around L∗ to
display a large scale self affinity with ζ2 ∼ 0.5.

3. Numerical approach

The above shows from a purely analytical point of view,
via isomorphisms of the asymptotic small scale equations
version and of the large scale equations version to know mod-
els, that two different scaling laws are expected for small and
large scales, and that the cross over should depend on the
far field stress magnitude. Independently from this general
analytical analysis, we will now show how to solve for this
model numerically, i.e. implement the dynamic evolution of
evolution of the interface with all the large and small scale
terms and random variables to represent the disorder, and
analyse the resulting morphogenesis.

3.1. Practical implementation of the model

We simulate the dissolution process for a calcite water
interface with constants identical to the ones used in the
discrete lattice code, i.e.: Surface tension γ = 0.35J · m−2,
molecular volume 2.2688 ·10−5 m3/mol, elastic properties of
the modeled rock: Poisson ratio ν = 0.33, Youngs modulus
E = 40 Gpa, Dissolution rate k0 = 10−7mol · m−2 · s−1.
The physical conditions adopted correspond to a tempera-
ture T = 420 K, and average stresses p and σs around 10 to
40 MPa.
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For the amount of the quenched noise associated to the
natural variations of the grain properties, the typical scale
attached to the quenched disorder (or typical grain size) is
considered to be around ` = 10µm – with no correlations
above this scale –, and the quenched disorder is character-
ized by a standard deviation

√

< η2 > = [α`p0/(βL∗σs)] ·
[(δE/E)+(δk/k0)+(δα/α)] corresponding to relative varia-
tions of the dissolution rate of order 10% (i.e. δk/k0 ∼ 0.1).

The dimensionless surface dynamic equation, witout dis-
order, would be:

∂tz(x, t) = v0 + ∂xxz −
`

L∗

∫

dy
∂yz

x − y
(44)

where L∗ = γE/(βp0σs), ` is the unit length, and τ =
`2RT/(γkΩ2) is the time unit.

We assume a small disorder in the implied quantities (e.g.
Young Modulus), that are quenched in the material prop-
erties of the rock heterogeneity associated with micromet-
ric grains, typically ` = 10µm. The interface is supposed
normal to largest stress direction (stabilizing elastic interac-
tions).

By perturbation to first order, in the referential frame of
the homogeneously moving average front, z′ = z − v0t, the
surface growth equation becomes:

∂tz
′(x, t) = ∂xxz −

`

L∗

∫

dy
∂yz

x − y
+ η(x, z(x)) (45)

with a quenched random term η(x, z′(x)) = [α`p0/(βL∗σs)]·
[(δE/E) + (δk/k) − (δα/α)]

Two first terms are stabilizing, only the quenched disor-
der destabilizes the interface. We perform the simulation
of this dynamic equation with both stabilizing terms and
quenched noise.

The quantification of the prefactors depend of the rock
type, and the formation stress. In addition to these map-
pings, the characteristic units are known as function of the
rock properties. The cross over scale L∗ = γE/(βp0σs) is
function of the pressure during formation, through p0 and
σs.

Determining the cross over L∗ at lab allows to deter-
mine such stress value during formation, and consequently
depth of the rock during stylolite formation. Assuming as

Figure 7. Snapshot of the pression-dissolution profile
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Figure 8. Average power spectrum of simulated
stylolitic fronts, in bilogarithmic representation. The
k−unit is 2π/L, with L = 4096` and a grain size ` =
10µm. The vertical unit is arbitrary. The crossover is
obtained at 2π/L∗

Figure 9. Profiles 1, 2, 3 and 4 from right to left and top
to bottom. A core from the Dogger formation (EST433
well) was cut in three parts to obtain four profiles. Each
profile was photographed at high resolution.

an order of magnitude p0 ∼ σs and characteristics values for
limestone elastic properties and water calcite reaction rates,
L∗ ∼ 1mm leads to a typical depth of 1 km. Stylolites can
thus be considered as fossils of the stress magnitude.

The dynamic equation Equation (41) is solved with an
event-driven algorithm, where at each step, the fastest dis-
solving grain is removed. The problem is considered as
L−periodic, and consequently the long-range elastic kernel
p.p.

∫

dy
∂yz

x−y
= −p.p.

∫

dy z(x)−z(y)

(x−y)2
is replaced by its finite-

size form, −p.p.
∫ L

0
dy z(x)−z(y)

sin2(π(x−y)/L)
π2

L2 . This classical form
can be obtained by solving the elastostatic equations in
Fourier space, and performing an inverse Fourier integration.
Each time a new grain is reached, the particular realization
of its quenched disorder η is evaluated using a Gaussian dis-
tribution. The dissolution surface simulated is 4096` long,
and 8000000 grains are dissolved.

3.2. Analysis of the small-scale and large-scale

roughness of the saturated interface

The simulation of the calcite-water system leads to a
grown dissolution interface. Starting from a flat interface,
after a transient time, the amplitude of the Fourier modes
of these interfaces saturates to a characteristic amplitude.
A snapshot of the developed stylolitic interface is shown in
Figure 7. This interface fluctuates around the average pro-
gressing flat dissolution front. The Fourier power spectrum
P (k, t) = ‖z̃(k, t)‖2 of each front z(x, t) is extracted, and the
ensemble average of this power spectrum P (k) =

〈

‖z̃(k)‖2
〉

is obtained for developed interfaces, by averaging over all
fronts after 80000 grains have been dissolved. The expected
small and large scale self-affine characteristics correspond
to the theoretical expectations, as shown in Figure 8: The
power-spectrum is indeed a power-law of scale, with two dif-
ferent exponents at large and small scale, and a cross over
around the scale L∗: For k > 2π/L∗, we have P (k) ∼ k−1−2ζ

with ζ = 1.2, and for the large scales, the roughness expo-
nent is found to be around ζ = 0.35. The straight lines in
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Figure 10. Functions obtained from profiles 1, 2, 3 and
4. A grey-level threshold was imposed on the pictures to
isolate the stylolites. The functions were then obtained
by selecting the mean of the y coordinate of the pixels
belonging to the stylolite, for every x running along the
stylolite average.

the bilogarithmic (figure 8) correspond to these Hurst expo-
nents, determined by linear regression over the two domains
k > 2π/L∗ and k < 2π/L∗.

Thus, we find that the scaling of saturated surfaces in
this model is compatible with the laboratory observations,
and with the analytical predictions above.

In addition, the dynamic behavior of these models (Ed-
wards Wilkinson in a quenched noise, or elastic string in
a disordered landscape) is know. The prefactor (character-
istic time) associated with the dynamics can be evaluated
through the above from rock material properties. An esti-
mate of time to saturation at an observation scale of a few
centimeters is around a few thousands of years: the stylolite
roughness is hence always at saturation value for a geologist
at small observation scales.

However, for longer systems, e.g. decametric ones, much
longer times would be required for saturation. Such long
stylolites are sometimes observed but seldom analysed in
terms of scaling of the height. In the only long case studied
to our knowledge, it was found that the large scales are not
saturated Laronne Ben-Itzhak et al. [2012b]. This means
that the time during which the stylolitisation was active on
such very long stylolites was only enough to lead the small
scales to saturation amplitude, but not the large ones (above
a few tenth of centimeters). The fact that the porosity was
clogged by precipitation along these long stylolites probably
stopped the evolution.

4. Example: Application of the model on
natural data

The model is applied on a stylolite from the ANDRA
(French national radioactive waste management agency) Un-
derground Research Laboratory (URL) at Bure in East-
ern France. The sample selected comes from the borehole
EST433 at a depth of 720 m. The host rock is a fine-grained,

Figure 11. Fourier Power Spectrum of the profile 2.
The raw data were binned logarithmically to run a linear-
by-part fitting on the data. Two different scaling regimes
are observed at small and large scale with Hurst exponent
around 1 and 0,5 respectively. The modelled fit reveals a
cross-over length L around 0.2 mm.

homogeneous grainstone from the Dogger age. The core was
cut in three parts thus giving four profiles for analysis (fig-
ure 9). Profiles 1 and 2 and profiles 3 and 4 are spaced by
3 mm (thickness of the drilling saw) and profiles 2 and 3
are spaced by 30 mm. Each profile has a length of 90 mm.
The stylolites were photographed at a resolution of 8 µm.
A systematic method was used to extract profiles from the
photographs. It consists of isolating the black pixels con-
stituing the clay particles in the stylolite from photographs
converted in grey level pictures. The profiles will be used
as functions in the spectral analysis (integral transforms)
and thus are required to be single-valued. Stylolites show
a self-affinity geometry [Schmittbuhl et al., 1995; Barabási
and Stanley , 1995] meaning that they are statistically in-
variant under an affine transformation. Thus, for ∆x and
∆y the horizontal direction amplitude and ∆z the vertical
direction amplitude: ∆x → λ∆x, ∆y → λ∆y and ∆z →
λH∆z, where λ can take any value and H is the Hurst ex-
ponent which describes the scaling invariance. As in Ebner
et al. [2008] we used the Fourier Power Spectrum (FPS)
[Schmittbuhl et al., 1995] and the Averaged Wavelet Coeffi-
cient (AWC) [Simonsen et al., 1998] signal processing meth-
ods to analyse the profiles. Other methods can be used such
as variable bandwidth methods consisting of calculating the
standard deviation or the difference between the maximum
and the minimum of the height of the signal [Schmittbuhl
et al., 1995]. We used two different methods to repeat the re-
sults. First we calculated the Fourier Power Spectrum P(k),
which is the square of the modulus of the Fourier transform,
as a function of the wave-number k (k = 2π/L, where L is
the wave-length). The power spectrum expressed as a func-
tion of the length for a self-affine profile behaves as P(L)'
L 2H+1. We calculated also the averaged wavelet coeffi-
cient spectrum with Daubechies 4 wavelets which behaves
as W(a)' a 1/2+H .

Both methods were used to analyze our data (figure 10).
The results show the two scaling regimes (see introduction)
described by two different power laws. Figure 11 shows the
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Figure 12. Averaged Wavelet Coefficient spectrum of
the profile 2. A linear-by-part fitting were run on the
data. Two different scaling regimes are observed at small
and large scale with Hurst exponent around 1 and 0,5
respectively. The modelled fit reveals a cross-over length
L around 0.4 mm. This is in good accordance with the
length estimated with the FPS method.

Fourier power spectrum for the profile 2 as a function of the
length L. The raw data are more concentrated at small scale.
Indeed, the profiles have a finite-size which gives the upper
limit for the analysis (corresponding to small wave-number).
To analyze the data, we apply a logarithmic binning so that
the weight on each point is equal. To estimate the cross-over
length, we used a linear-by-part fit with a crossover function
changing the scaling law from small to large scale as explain
in Ebner et al. [2008]. The averaged wavelet coefficient spec-
trum (figure 12) doesn’t require a binning. The same kind
of fitting was used to appraise the cross-over length.

5. Discussion and conclusion

Analysing the local boundary conditions due to the fact
that the inside of a stylolite does not sustain shear stress,
and an elastic surrounding, we derived the dependence of
the free energy along a stylolite surface on the shape of the
stylolite. Adding up a surface energy term, we derived a dy-
namic surface evolution model for a stylolitic interface. This
model, in situations where the stylolite is perperndicular to
the largest principal stress axis - as is normally the case -
was shown to display terms that lead to the stabilization of
the surface dynamics, i.e. to the vanishing of initial pertur-
bations towards a flattening surface. Hence, the presence of
disorder linked to the heterogeneity of material properties is
required to explain the rough character of stylolites. Intro-
ducing such non correlated quenched disorder, we obtained
that two scaling laws can be predicted: at small scale, a
destabilizing disorder competing with a stabilizing surface
energy term, leads to a model similar to Edwards Wilkinson
model in a quenched noise, which leads to a saturated sur-
face with a Hurst exponent around 1.1. At large scale, the
competition of destabilizing disorder, and stabilizing elastic
interactions in this configuration, are isomorphic to mod-
els of evolution of an elastic interface in quenched disorder,
which leads to a Hurst exponent of 0.5.

The cross over scale between these two scaling regime was
shown to be directly linked to the stress magnitude. Hence,
the determination of this corss over, and other physical prop-
erties for a rock, allows to use stylolites as a marker of paleo
stress magnitude.

The two scaling laws, and the dependence of this cross
over scale on the stress magnitude, had been derived in two
ways: by purely analytical derivation and isomorphims to
know models in section 2, and by numerical integration in
section 3.

Importantly, it should be noted that the elastic forces, de-
pending on the boundary conditions, can be stabilizing, as
here, or destabilizing. The existence of several models, and
several techniques of calculations of the fee energy, global or
local ones, can raise the question of a stabilizing or desta-
bilizing character of the elastic forces in the stylolite con-
texte. Apart from the derivation carried out in this article
in details, we nte the following argument that can distin-
guish between stabilizing and destabilizing terms: The only
difference between models with stabilizing or destabilizing
elastic kernal is the sign of the prefactor in front of the elas-
tic operator in the dynamic equation. However, when this
sign is reverted, all large scale wavelngth Fourier modes be-
come unstable (with a selection of fastest growing mode,
as e.g. shown in Misbah et al. [2004] or Bonnetier et al.
[2009]). Numerical simulations similar to the ones shown
above, with a destabilizing mode, do not lead to any satura-
tion of the amplitude of the large modes at long times, and
the Fourier power spectrum at a given time does not display
any scaling law at fixed time for the large scales. Hence, the
scaling laws observed in field stylolites are compatible with
a model where elastic forces are stabilizing, and not ith one
where they would be destabilizing: we take this as a good
sign of validity of the proposed approximations to take the
boundary conditions into account in the proposed model.

In general, the results of these two independent tech-
niques, analytical and numerical ones, are found to be con-
sistent with three other independent observations:

• The existence of two Hurst exponents at small and large
scales, as was observed in Schmittbuhl et al. [2004], and as
was shown to exist in the stylolites from the log cores of
Bure-sur-Meuse in section 4.

• The results of molecular dynamic models of dissolu-
tion with pressure dependent and surfae energy terms in
the free energy, displaying similar scaling laws, and an iden-
tical law for the dependence of cross over length over the
applied stress Koehn et al. [2012]

• The fact that stylolites in a common rock formation in
the Cirque de Navacelles, at various depth, show a forma-
tion stress derived from this model which is comatible with
the derived weight of overburden at the time of formation
Ebner et al. [2008]

We show eventually on the example of sedimentary stylo-
lites in Bure, how the confinement stress can be derived from
morphological studies of stylolites. The ubiquitous charac-
ter of these pressure solution features makes them a versa-
tile marker for paleostress magnitude, that can give access
to the stress at the instant of formation of the stylolites.
This easily available paleostress marker opens the way for
systematic studies of paleostress in large rock formations of
different stylolite families. Together with dating indications
for the time of occurence of such stylolites (as e.g. times
of tectonic events), and current stress assessment methods,
this opens the way for the determination of stress evolution
in large basins, which is a key to understand their evolution.
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