# Viscous fingering in porous media

Renaud Toussaint (Institut de Physique du Globe de Strasbourg) Jean Schmittbuhl (IPGS) Knut Jørgen Måløy (University of Oslo: UiO) Grunde Løvoll (UiO) Yves Méheust (University of Trondheim, NTNU)

Phys. Rev. E **70**, 026301, 2004 cond-mat/0501047, submitted to Phys. Rev. Lett.



#### Analog model for biphasic flow in porous medium

Hele-Shaw cell: two parallel plates, cell with rectangular section, Stokes flow.



FIGURE 10. Arrangement of long Hele-Shaw cell for photographing fingers.

#### Saffman and Taylor, 1958, Proc. Roy Soc. London A.

The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid

By P. G. SAFFMAN AND SIR GEOFFREY TAYLOR, F.R.S. Cavendish Laboratory, University of Cambridge

(Received 17 January 1958-Read 17 April 1958)

# Saffman Taylor instability

Fluid displacing a more viscous fluid:



Involved forces:

viscous forces  $v = -(\kappa/\mu)\nabla P$ , capillary forces  $\delta P_c = -\gamma/r$ .

## **Saffman Taylor solutions**

Family of curves satisfying Darcy law  $v = -(\kappa/\mu)\nabla P$ , with neglected surface tension along boundary.



FIGURE 7. Calculated profiles for  $\lambda = 0.2$ , 0.5 and 0.8.

# Width selection

fraction  $\lambda$  of system size invaded, selected by surface tension, no matter how small.



FIGURE 9

(Facing p. 318)

At large speed:  $\lambda = 0.5$ 

# Influence of pore-scale disorder

Porous medium:



• Wettability:



- Drainage: the non-wetting fluid displaces the wetting fluid.
- Capillary pressure:  $P_c = \frac{2\gamma}{r} \implies$  larger pores are more easily invaded



| r          | _ | radius of curvature     |
|------------|---|-------------------------|
| $\gamma$   | _ | interface tension       |
| $\mu_{nw}$ | _ | viscosity (non-wetting) |
| $\mu_w$    | _ | viscosity (wetting)     |

# Experimental setup: a model of 2D random porous medium



- Mono-layer of a = 1mm glass beads "sandwiched" between two horizontal plates
- air displacing glycerol/water
- Three model widths to check size dependencies (L × W = 840mm × 430mm or 840mm × 215mm or 840mm × 110mm)
- Pictures of the structure taken at regular intervals

## **Invasion structures**

• We see a continuous transition from capillary fingering to viscous fingering, as function of  $Ca = \frac{\mu v a^2}{\gamma \kappa}$ ...



Mass fractal dimension: Box counting Collapse with scaled size  $s \cdot Ca$ 



- D=1.8 corresponds to capillary fingering, or invasion percolation.
- D=1.5 is smaller than the Diffusion Limited Aggregation result, D=1.71. In the absence of granular material at high injection speed in Hele-Shaw cells, only a large scale exponent D=1.70 is found in experiments (Moore et al., Phys. Rev. E, 2002)

# **Average geometry**

underlying statistically stationary process: in the reference frame of most advanced tip, analysis of invader's occupancy probability



# **Selected width**

Occupancy function thresholded at half-maximum: selected width:  $\lambda=0.4$ 



# Conclusion

Presence of disorder in pore structure modifys the large scale structure:

characteristic width of most occupied zone,

large scale fractal dimension.

Can be explained by probabilistic approach of the invasion process.

# Perspectives

Numerical and experimental (transparent models) study of the impact of the probability distribution of the pore sizes on the large scale flow.

Extension to biphasic flow in nonsaturated situations.

# The speed of the fingertip

 $\bullet\,$  For each capillary number Ca the speed of the most advances fingertip could be treated as constant



#### Average mass of invasion cluster

- Since φ(z) indep of Ca, v<sub>tip</sub> ~ constant, the mass of the invasion cluster could be scaled with n<sub>Ca</sub> = <sup>Wγκ</sup>/<sub>μwa<sup>4</sup></sub> Ca/<sub>v<sub>tip</sub>
  </sub>
- And the scaled mass is also equal to the cumulative invasion probability distribution  $n(z)/n_{\rm Ca} = \Phi(z) = \int_0^z \phi(y) dy$



# Ca dependence in $m_{\infty}$ and $v_{tip}$

• The saturation mass and the speed of the fingertip is capillary number dependent



# Transition scale from capillary to viscous fingering: $w_f$

- The characteristic finger width  $w_f$  is measured as the average intersection length of cuts perpendicular to the flow direction with trapped clusters removed
- w<sub>f</sub> is the cutoff scale between capillary and viscous fingering, characteristic of maximum loop size



#### **Transition scale** $w_f$ depending on Ca

 $w_f \cdot \nabla P \sim \Delta P_c$  width of threshold distribution. Along a given boundary,  $\nabla P \propto \nabla P(-\infty) \propto Ca$ Thus,  $w_f \sim 1/Ca$ Large Ca, minimum loop size  $\sim$  few pore size a, and only branched structure.

Small Ca, whole structure = gigantic loop (lowly branched), and  $w_f$  saturates around the lateral structure extent,  $\sim \lambda W$ .

#### Finger width $w_f$





- D=1.8 corresponds to capillary fingering, or invasion percolation.
- D=1.5 is smaller than the Diffusion Limited Aggregation result, D=1.71. In the absence of granular material at high injection speed in Hele-Shaw cells, only a large scale exponent D=1.70 is found in experiments (Moore et al., Phys. Rev. E, 2002)



Average collapsed







Average density map over experiments and time



Contour at half-maximum average density



Ca = 0.058

# Large scale: width selection $\lambda = 0.4$ Comparison with Saffman-Taylor finger generic shape

Some similarities with Saffman-Taylor finger shape, selected width  $0.35 < \lambda < 0.45$ 

(conjecture of Arneodo et al, 1996: for DLA, average half-density profile = SF finger,  $\lambda = 0.62$  Somfai et al 2003: confirmation for selected width, difference in the detailed head shape.

Similar conclusion for present experiment, selected width:  $0.35 < \lambda < 0.45$ 



Average density map over experiments and time



Ca = 0.22

Contour at half-maximum average density



Ca = 0.22

Large scale: width selection  $\lambda = 0.4$ Comparison with Saffman-Taylor finger generic shape

 $w_f$  depends on Ca , not the width selected  $0.35 < \lambda < 0.45$  as long as Ca > 0.03

#### Normalized density along transverse-to-flow direction

 $ho(x) \propto n(x)$ , normalized density (direction perp. to previous plots), cumulated on all z at W or more from tip or inlet, at Ca = 0.058 and 0.22:



# Relationship between Saffman-Taylor $\lambda = 0.4$ , and poroviscous flow through lateral pressure field

Comparison of the pressure scaled with Ca, measured in experiments at three positions (17% of lateral extent from side boundary), and calculated in Saffman-Taylor problem with finger of width  $\lambda = 0.4$ .



# $v_{tip}$ revisited and $w_f$

- The characteristic finger width  $w_f$  is measured as the average intersection length of cuts perpendicular to the flow direction with trapped clusters removed
- $w_f$  is the cutoff scale between capillary and viscous fingering



# **Selection of** $\lambda$ and D = 1.5

Laplace problem:  $\nabla^2 P = 0$ 

Boundary condition ahead:  $\nabla P \propto Ca$ 



Boundary condition along the invasion cluster: influence of the capillary threshold lower cutoff Laplacian Growth:  $v\propto \nabla P$ 

DLA: Growth proba  $\propto \nabla P$ 

 $\eta\text{-}\mathsf{DBM}:$  Growth proba  $\propto (\nabla P)^2$ 

Here, interface speed along a given cluster, averaged over possible values of the next throat threshold:

$$v(x,z) = \frac{2\kappa}{\mu} \frac{(P_0 - P(x,z) - P_t(x,z))}{a} \,. \tag{1}$$

 $N(P_t(x, z))$  capillary pressure distribution. Assume a flat capillary pressure distribution with lower limit  $P_t^{\min}$ , upper limit  $P_t^{\max}$  and width  $W_c$ . Expectational value of the interface velocity (average value over the capillary threshold distribution)

$$\langle v(x,z)\rangle = \int_{P_t^{\min}}^{P_0 - P(x,z)} \frac{2\kappa}{a\mu} \left(P_0 - P(x,z) - P_t(x,z)\right)$$
 (2)

$$\cdot He\left(P_0 - P(x,z) - P_t(x,z)\right) dP_t/W_c \tag{3}$$

$$= \frac{\kappa}{a\mu W_c} \left( P_0 - P(x,z) - P_t^{\min} \right)^2 \quad . \tag{4}$$

Analogy to Dielectric Breakdown Model,  $\eta = 2$ .

| Model               | Fractal dimension            | Width selected              |
|---------------------|------------------------------|-----------------------------|
| DLA, DBM $\eta = 1$ | D=1.71                       | $\lambda = 0.62$            |
|                     | (Somfai 2003)                | (Somfai 2003, Arneodo 1996) |
| viscous fingering   | D=2 , D=1.70                 | $\lambda = 0.50 - 0.60$     |
| (empty Hele Shaw)   | (slow, ST)(fast)             | (Moore-Swinney2003)         |
| $DBM\ \eta=2$       | D=1.4-1.5                    | $\lambda < 0.5$             |
|                     | (Pietronero, Mathiesen 2003) | (Somfai 2003)               |
| viscous fingering   | D=1.5-1.6                    | $\lambda = 0.40$            |
| in porous medium    |                              |                             |