

Dynamics of crustal scale fluid flow, fluid mixing and hydrothermal ore deposits

Paul D. Bons

Structural Geology, Dept. of Geosciences, Eberhard Karls University Tübingen

structural-geology.info

Tamara de Riese, Enrique Gomez-Rivas, Anett Weisheit

Fluids are ubiquitous in rocks

- Fluids play a role in almost any geological process:
 - igneous activity in subduction zones
 - triggering earthquakes
 - controlling rheology ("water weakening")
 - metamorphic reactions
 - mass and heat transport
 - ore deposits
 - geothermal energy
 - nuclear waste disposal
 - etc.

This talk

- Hydrothermal ore deposits
 - fluid mixing?
 - brecciation?
- Hydrothermal dolomitization
 - thermal and chemical plume
 - role of stylolites
- Bursts of hot fluids
 - volumes?
 - temporal distribution?

Hydrothermal ore deposits

- Hydrothermal ore deposits common in W-Europe:
 group 1 (Permian) group 2 (Jurassic)
 - Black Forest
 - France
 - Spain
- Characteristics:
 - Pb, Zn, Ag, U, etc.
 - Near unconformity
 - Brecciated
 - Indications for fluid mixing

Staude et al. EPSL, 2009

Fluid mixing

- Evidence for fluid mixing:
 - stable isotopes (e.g. $\delta^{18}O$)
 - halogen ratios (e.g. Cl/Br)
 - metal and trace-elements

Bons et al. Geology (2014.)

Classical model for fluid mixing

- hot basement brines from below
- converging at ore deposit

Classical model: convection

- Convection for simultaneous upwards and downwards flow
 - P_{fluid} close to hydrostatic
 - high permeability assigned to faults
 - high geothermal gradient or heat flow
- Result: broad thermal aureoles

Classical model: convection

- Convection for simultaneous upwards and downwards flow
 - P_{fluid} close to hydrostatic
 - high permeability assigned to faults

15 km depth: *P_{rock}* – *P_{fluid}* ≈ 2.5 kbar!

- high geothermal gradient or heat flow
- Result: broad thermal aureoles

Hydromechanical problems

Teufelsgrund, Black Forest

Typical brecciation indicates fluid overpressure

Hydromechanical problems

Teufelsgrund, Black Forest

- Typical brecciation indicates fluid overpressure
- Fluids would flow upwards when P_{fluid}>P_{lithostatic}
- Fluids do not flow to single point or "sink"

separate flow down and up in time

Scheme for fluid flow and evolution in Black Forest

- Bons et al. Geology, 2014
- Bons & Gomez-Rivas, Econ. Geol. 2013

tures

Rapid ascent: mobile hydrofractures

Fractures propagate

- open at upper tip
- close at bottom
- Velocity ≤ m/s!
- Ascending batches
 - mix underway
 - tap fluids from whole column
 - shallow & young fluids
 - deep & old fluids

Bons, Tectonophysics, 2001

Summary

- Slow infiltration of basement rocks
 - driven by desiccation (H₂O consumption)
 - development of different signatures
- Rapid ascent of fluids
 - in mobile hydrofractures
 - fast transport to retain heat: hydrothermal fluids
 - tapping and mixing of different fluids

Next: Stratiform, hydrothermal dolomite

- Creteceous Carbonates, Benicàssim, Spain
- Analogue for offshore oil/gas fields

- Stratiform dolomite layers up to ≥5 km extent
- High T at shallow depth

Questions to address

- Why stratiform?
 - very localized dolomitization
 - lithological control?
 - porosity/permeability?
 - grain size?
- How to achieve high T?
 - dolomite: 100-150°C
 - ambient temperature: ≤50°C

Questions to address

- Why stratiform?
 - very localized dolomitization
 - lithological control?
 - porosity/permeability?
 - grain size?
 - what else?
- How to achieve high T?
 - dolomite: 100-150°C
 - ambient temperature: ≤50°C

No significant or systematic differences

Dolomitization front is sharp

- Dolostone is bound by stylolites
- Stylolites act as barriers to flow and reaction

- Dolostone is bound by stylolites
- Stylolites act as barriers to flow and reaction

- Dolostone is bound by stylolites
- Stylolites act as barriers to flow and reaction

Typical scenario

- Ore deposits on faults that penetrate crystalline basement
- Associated with stratiform dolomite in carbonate layer
 - Dolomitization: $Ca_2(CO_3)_2 + Mg^{2+} \rightarrow CaMg(CO_3)_2 + Ca^{2+}$

Fluids enter sediments from the fault

Forming a reactive, Mgbearing plume

Similar to pollutants in groundwater

Can this be explained by convection?
 Try with TOUGH2 (Lawrence Berkeley National Lab)

Result at t=100,000 years

- Convection controlled by high-permeability faults
- Elevated flow velocities in right lithology
 - flow velocity in order of ≤10 m/a

Temperature distribution

Broad increase in temperature

x Rocks below dolomite should be metamorphosed

How fast must these fluids ascend?

Hot fluids come from below

- Except in case of igneous intrusions,
- hot fluids must come from ≥equally hot lower regions of the crust

How fast to maintain high ΔT?

 Flow rate must be ≥cm/s to keep fluid significantly hotter that host rock

Summary

- Hot fluids can reach shallow levels
 - require high ascent rates
 - not consistent with large-scale convection models
 - short bursts of flow needed
- Structures focus and guide fluid flow
 - stylolites in Benicàssim
 - large structures at Hidden Valley, S. Australia

Hidden Valley, Mount Painter Example of rapidly rising fluids

A giant, 10 km² breccia

Palaeozoic N-S shortening

GoogleEarth

Palaeozoic N-S shortening

- Basic units:
 - Mesoproterozoic basement
 - 10 km thick 800-500 Ma Adelaidean Sequence
- Large folds caused by N-S shortening between two rigid cratons
- Oblique ramping pushed basement up in large anticline

> the Mount Painter Inlier

Hidden Valley on convergence
 anticline and ramp

GoogleEarth

- 800 Ma Adelaidean unconformity was buried ≥10 km
- Exhumation started ~500-450 Ma (≤Delamerian)
- Finished by ~300 Ma
- Exhumation at ramp ~15 km

Alteration in basement

Several (>10) km³ fluid released

- **Biotite breakdown** Bt + O \rightarrow K-fsp + Fe & Mg + H₂O
- Produces "granite-like" rock
 - Low water activity?
 - Change in f_{O2}?
 - High fluid salinity?
 - Intrusions?
 - Increase in T
 - Input of reactive fluids

(work in progress)

Extensive breccias in core of anticline

Fsp breccias & U-bearing haematite breccias

Hidden Valley Breccia

- About 10 km² of hydrothermal breccia
- Clasts range from <10 μ m size to >100 m size

Weisheit et al. Int. J. Earth Sci. 2013

Cumulative size distribution

- Breccia contains mix of all lithologies of region
 - metamorphic and igneous rocks of basement
 - non-metamorphic rocks from cover, now >2 km above present outcrop

Weisheit et al. Int. J. Earth Sci. 2013

- Clasts can be mixed and transported vertically
- by ascent of "burps" of fluid
- dilation followed by collapse & mixing

How long or fast fluid flow?

- Fluid budget
 - Estimated fluid volume ≈20 km³
 - Area of breccia ≈10 km²
 - About 2000 m³ fluid went through each m²
- Clasts are lifted and mixed
 - estimated flow rate >m/s
 - Minimum porosity during brecciation ≈5%
- Total duration of flow (through each m² breccia)
 - 2000 / 0.05 = 40,000 seconds (≈1/2 day)
 - Over period of ≤200 million years

Bursts of fluid flow

- Flow is not continuous
- Flow occurs in short bursts
 - as avalanches in selforganised sand pile
 - power-law distribution
 expected

$$N_{>V} \propto V^{-m}$$

2/3 < *m* < 1

Interval of bursts

- Hidden Valley
 - 20 km³
 - 150 million years
- V_{max} of largest burst
 - depends on number N_{max}
 - between 0.01 and 1 km³
- Flow intervals

~1000 yrs for $V > 1000 \text{ m}^3$ ~1-100 yrs for $V > 1 \text{ m}^3$

Conclusions

- Hydrothermal fluid flow is a highly dynamic process
 - Periods of stagnation
 - modification of fluid signatures
 - fluid-rock interaction
 - Intermittent bursts of flow in hydrofractures
 - very fast transport of mass and heat
 - mixing of different fluids

Thank you

- Bons (2001) The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. *Tectonophysics* 336, 1-17
- Bons & Gomez-Rivas (2013) Gravitational fractionation of isotopes and dissolved components as a first-order process in hydrothermal crustal fluids. *Economic Geol.* 108, 1195-1201
- Bons, Elburg & Gomez-Rivas (2012) A review of the formation of tectonic veins and their microstructures. J. Structural Geology 43, 33-62
- Bons, Fusswinkel, Gomez-Rivas, Markl, Wagner & Walter (2014) Fluid mixing from below in unconformityrelated hydrothermal ore deposits. *Geology 42, 1035-1038*
- Bons & van Milligen (2001) A new experiment to model self-organized critical transport and accumulation of melt and hydrocarbons from their source rocks. *Geology 29, 919-922*
- Matthäi, Heinrich & Driesner (2004) Is the Mount Isa copper deposit the product of forced brine convection in the footwall of a major reverse fault? *Geology 32, 357–360*
- Staude, Bons & Markl (2009) Hydrothermal vein formation by extension-driven dewatering of the middle crust: An example from SW Germany. *EPSL 286, 387-395*
- Weisheit, Bons & Elburg (2013) Long-lived crustal-scale fluid-flow: The hydrothermal mega-breccia of Hidden Valley, Mt. Painter Inlier, South Australia. *Int. J. Earth Sci. 102, 1219-1236*
- Martín-Martín, Gomez-Rivas, Gómez-Gras, Travé, Ameneiro, Koehn, Bons (in press) Activation of stylolites as conduits for overpressured fluid flow in dolomitized platform carbonates. *Geol. Soc. London Special Issue on Small to subseismic-scale reservoir deformation*
- Sachau, Bons, Gomez-Rivas (2015). Transport efficiency and dynamics of hydraulic fracture networks. *Frontiers in Physics, special issue on Flow and Transformations in Porous Media*