Dynamics of crustal scale fluid
flow, fluid mixing and
hydrothermal ore deposits
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Fluids are ubiquitous in rocks

- Fluids play a role in almost any geological
process:

— igneous activity in subduction zones

— triggering earthquakes

— controlling rheology ("water weakening")
— metamorphic reactions

— mass and heat transport
* ore deposits
» geothermal energy
* nuclear waste disposal
- etc.



This talk

- Hydrothermal ore deposits
— fluid mixing?
— brecciation?

- Hydrothermal dolomitization
—thermal and chemical plume
— role of stylolites

- Bursts of hot fluids
— volumes?
— temporal distribution?




Hydrothermal ore deposits

- Hydrothermal ore deposits common

i n W- E u ro pe : |:] group 1 (Permian)
O group 2 (Jurassic)
[ group 3 (Paleogene)
— Black Forest g
- F ra n Ce i Strasbourg

— Spain

- Characteristics:
— PDb, Zn, Ag, U, etc.
— Near unconformity
— Brecciated
— Indications for fluid mixing e ot

Staude et al. EPSL, 2009



Fluid mixing

» Evidence for fluid mixing:
— stable isotopes (e.g. §80)
— halogen ratios (e.g. Cl/Br)
— metal and trace-elements
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Classical model for fluid mixin
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Classical model: convection

o -Regional-scale forced convection 375Kk.y.

Mount Isa
ore deposit,
Australia

Matthai et al.

Geology,
1 2004

— P,,4 Close to hydrostatic

— high permeability assigned to faults

— high geothermal gradient or heat flow
- Result: broad thermal aureoles



Classical model: convection

o -Regional-scale forced convection 375Kk.y.

Mount Isa
50 .
ore deposit,
100 Australia
150 .
3(5)8 Matthai et al.
300 Geology, 2004
350
400 °C
<1 , RER AT = 45 °CN
- Convection for simultaneous upwatds and downwards flow
— Pyiq ClOSe to hydrostatic 15 km depth:

— high permeability assigned to faults | P,ocx — Priiq = 2-5 kbar!
— high geothermal gradient or heat flow
- Result: broad thermal aureoles




Hydromechanical problems

recharge of cold
— - [meteoric fluids

\ lowest hydraulic
\potential

Teufelsgrund, Black Forest

- Typical brecciation indicates fluid overpressure



Hydromechanical problems

\meteoric fluids

_ 21 recharge of cold
N\

\ lowest hydraulic
\potential

| Teulsgru Black res
- Typical brecciation indicates fluid overpressure
* Fluids would flow upwards when P, >P,

ithostatic

* Fluids do not flow to single point or "sink"



separate flow down and up in time

erosion revaporite deposition
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« Scheme for fluid flow and evolution in Black Forest

— Bons et al. Geology, 2014
— Bons & Gomez-Rivas, Econ. Geol. 2013
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Rapid ascent: mobile hydrofracture

Bons, Tectonophysics, 2001

Fractures propagate
— open at upper tip

— close at bottom
Velocity = m/s!
Ascending batches
— mix underway

— tap fluids from whole
column

- shallow & young fluids
 deep & old fluids



Summary

- Slow infiltration of basement rocks
— driven by desiccation (H,O consumption)
— development of different signatures

- Rapid ascent of fluids
— in mobile hydrofractures
— fast transport to retain heat: hydrothermal fluids
— tapping and mixing of different fluids



Next: Stratiform, 3] e
hydrothermal dolomite 5/ =
Rl Voo

- Creteceous Carbonates, Benicassim, Spain
- Analogue for offshore oil/gas fields



Stratiform, hydrothermal
dolomite

- Stratiform dolomite layers up to =5 km extent
* High T at shallow depth



Questions to address

* Why stratiform?
— very localized dolomitization

— lithological control?
* porosity/permeability?
* grain size?

- How to achieve high T?
— dolomite: 100-150°C
— ambient temperature: <50°C



Questions to address

* Why stratiform?
— very localized dolomitization

— Lithn nmina cnntrnl?
TGN INJ \Jvl\.l \W AW A NLY W n

| ; No significant or
* porosity/permeadiity? | gystematic

' grain-size? differences
— what else?

- How to achieve high T?
— dolomite: 100-150°C
— ambient temperature: <50°C




- Dolomitization front is sharp



- Dolostone is bound by stylolites
- Stylolites act as barriers to flow and reaction



Why stratiform? Stylolites

. Dolostone’. - &

- Dolostone is bound by stylolites
- Stylolites act as barriers to flow and reaction



Why stratiform? Stylolites

. Dolostone’. - &

- Dolostone is bound by stylolites
- Stylolites act as barriers to flow and reaction



Typical scenario

- Ore deposits on faults that penetrate crystalline basement
- Associated with stratiform dolomite in carbonate layer
— Dolomitization: Ca,(CO,), + Mg#* — CaMg(CO,), + Caz*

dolomitization

) Fluids enter sediments
s = from the fault

Benicassim, fiios =

Y L. R e T e o s e s s e A N N
\

Spain

Forming a reactive, Mg-
bearing plume

e.g. Black Forest, " i}

Germany Similar to pollutants in

hydrothermal ores groundwater

(Ag, U, Pb, Zn, etc.)



Fluids 50-100°C hotter than
surroundings <1 km, <50°C

- Can this be explained by convection?
— Try with TOUGH2 (Lawrence Berkeley National Lab)



Result at t=100,000 years

0 = Vfluid (m/a)
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- Convection controlled by high-permeability faults
v Elevated flow velocities in right lithology
* flow velocity in order of =10 m/a
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- Broad increase in temperature
X Rocks below dolomite should be metamorphosed



Fast, localised fluid flow
needed <1 km, 250°C

« How fast must these fluids ascend?



Hot fluids come from below

Except in case of igheous intrusions,

hot fluids must come from =equally hot lower
regions of the crust
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hotter that host rock

T (°C)

How fast to maintain high AT?

- Flow rate must be =cm/s to keep fluid significantly
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Ascending hydrofracture
— 200 m tall
— 1 cm wide

— Released at 5 km
depth

— At 145°C
Finite-difference model



Summary

 Hot fluids can reach shallow levels
— require high ascent rates

— not consistent with large-scale convection
models

— short bursts of flow needed

- Structures focus and guide fluid flow
— stylolites in Benicassim
— large structures at Hidden Valley, S. Australia
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Hidden Valley, Mount Painter
Example of rapidly rising fluids
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Palaeozoic N-S shortening

GoogleEarth




Palaeozoic N-S shortening

Basic units:
— Mesoproterozoic basement

— 10 km thick 800-500 Ma Adelaidean
Sequence

Large folds caused by N-S
shortening between two rigid
cratons

Oblique ramping pushed basement
up in large anticline
» the Mount Painter Inlier

Hidden Valley on convergence
anticline and ramp

S 3 N
GoogleEarth
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Alteration in basement

Several (>10) km? fluid released

- Biotite breakdown
Bt + O — K-fsp + Fe & Mg +(H,0)
- Produces "granite-like" rock

— Low water activity?

— Changeinfy,? [P .
. . . . ,D ! I
— High fluid salinity? .' Q:ec”r'ﬁf"smi'
_ IntrUSiOnS? o " Incr?asingllg"
. _ = 02 / >~
Increase in T a1 1
* Input of reactive ,' /Ié’{
fluids S )
(work in progress) L%~ dl



Extensive breccias in core of

anticline
- Fsp breccias & U-bearing haematite breccias




Hidden Valley Breccia

- About 10 km? of hydrothermal breccia
- Clasts range from <10 ym size to >100 m size

map
Weisheit et al. Int. J. Earth Sci. 2013



Cumulative size distribution

§ecﬁon

~ thin
G 2

4
Field data ~
~N
N,,ox A103 ™ map
4 ~ )

G IR S ~_ Fig.1C

S SN /
1 < ¥

1“ area (A, m?) g,
10-8 106 104  0.01 1 100  10+4

Weisheit et al. Int. J. Earth Sci. 2013



Clasts highly variable

- Breccia contains mix of all lithologies of
region
— metamorphic and igneous rocks of basement

— non-metamorphic rocks from cover, now >2 km
above present outcrop

Weisheit et al. Int. J. Earth Sci. 2013



How to mix clasts?
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- Clasts can be mixed and transported vertically
- by ascent of "burps" of fluid
- dilation followed by collapse & mixing



How long or fast fluid flow?

- Fluid budget
— Estimated fluid volume =20 km?
— Area of breccia =10 km?
— About 2000 m3 fluid went through each m?
« Clasts are lifted and mixed
— estimated flow rate >m/s
— Minimum porosity during brecciation =5%
- Total duration of flow (through each m?2 breccia)
— 2000/ 0.05 = 40,000 seconds (=1/2 day)
— Over period of =200 million years



Bursts of fluid flow

 Flow is not continuous
 Flow occurs in short bursts 100 { &

— as avalanches in self-
organised sand pile

— power-law distribution 10 -
expected

Ot=74-8.3h

5t=93.4-948h _ _ |
—-m -
oC volume [cm®
01 1 10
23<m<1 Bons & van Milligen,

Geology, 2001



Interval of bursts

- Hidden Valley 1
— 20 km?

_ 150 million years m
0,001 N> C V

0,66 0,71 0,76 0,81 0,86 ) 0,96

0,1

) [km3]

V(m

V.., Of largest burst
—depends on number N, ...
— between 0.01 and 1 km? %
* Flow intervals 3 T
~1000 yrs for V>1000 m3 ¢ -
~1-100 yrs for V>1 m?3 .

0,66 0,71 0,76 0,81 0,86 0,91 0,96

exponent m



Conclusions

- Hydrothermal fluid flow is a highly dynamic
process

— Periods of stagnation
- modification of fluid signatures
» fluid-rock interaction

— Intermittent bursts of flow in hydrofractures
» very fast transport of mass and heat
 mixing of different fluids



Thank you
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