

Méthode magnétique appliquée à l'exploration multi-échelle du Bassin de Franceville

Soutenance de Thèse

Mardi 27 septembre 2011

Simon FLEURY

Directeur de thèse : Marc Munschy

(Modifiée d'après Edel, Cours Méthodes Potentielles)

 Localisation quelconque : anomalie dissymétrique

(Modifiée d'après Edel, Cours Méthodes Potentielles)

 Objet situé aux pôles : anomalie symétrique centrée sur l'objet

Comment détecter des cibles uranifères à partir de données magnétiques ?

> Eléments de gîtologie, adapter outils de traitement

Qu'est ce qu'une anomalie magnétique ?

Diversité des définitions, sous entend des approximations

Quelles sont les fonctions magnétiques caractéristiques des sources ?

Magnétostatique/Méthodes potentielles, modélisation/inversion

Sommaire

► 1- Les fonctions magnétiques caractéristiques

- 2- Superpotentiels et Tenseur de l'Anomalie Magnétique : Applications
- 3- Prospection aéromagnétique du Bassin de Franceville
- 4- Conclusions et perspectives

1.1.1 Champ d'anomalie magnétique et Anomalie du champ total

1.1.2 Anomalie de projection : F₁

$$F \neq C \qquad F = \|R + C\| - \|R\|$$

$$\Rightarrow \text{ Développement limité de } F: C << R \qquad \alpha = (\vec{C}, \vec{R})$$

$$F = C\cos\alpha + \left(\frac{1}{2} - \frac{1}{2}\cos^2\alpha\right)\frac{C^2}{R} + \left(-\frac{1}{2}\cos\alpha + \frac{1}{2}\cos^3\alpha\right)\frac{C^3}{R^2} + O\left(\frac{C^4}{R^3}\right)$$

$$F_1 = \vec{\rho}.\vec{C}$$

$$C \text{ Classiquement }: F \approx F_1 \qquad (Blakely, 1995)$$

$$F_1 : \text{ définie comme la projection de } \vec{C} \text{ sur } \vec{R}$$

$$F_1 : \text{ définie comme la projection de } \vec{C} \text{ sur } \vec{R}$$

Passage par F_1 essentiel pour les méthodes potentielles.

 $= F_{k+1} = F_1 + \frac{1}{2R} \left(C^2 - F_k^2 \right) + O\left(\frac{C^{k+1}}{R^k} \right)$

$$F_{3} = F_{1} + \left(C^{2} - F_{1}^{2}\right)\frac{1}{2R} + \left(F_{1}^{3} - C^{2}F_{1}\right)\frac{1}{2R^{2}} + O\left(\frac{C^{4}}{R^{3}}\right)$$

 $\parallel \rightarrow$

 $\rightarrow \parallel \qquad \parallel \rightarrow \parallel$

1 – Les fonctions magnétiques caractéristiques

1.1 – Définitions : Anomalie du champ total et Anomalie de projection
1.2 – Comparaison entre Anomalie du champ total et Anomalie de projection
1.3 – Les fonctions caractéristiques : Potentiels, Superpotentiels et Tenseurs

1.1.2 Anomalie de projection : F₁

Cas du dipôle induit

Anomalies de projection pour différentes valeurs d'inclinaisons et de déclinaisons

	1.1 – Définitions : Anomalie du champ total et Anomalie de projection	
1 – Les fonctions magnétiques caractéristiques	1.2 – Comparaison entre Anomalie du champ total et Anomalie de projection	284
	1.3 – Les fonctions caractéristiques : Potentiels, Superpotentiels et Tenseurs	-0.

1.2.1 Comparaison entre F et F_1

Représentations géométriques de *F* et F_1 : $F_1 = \vec{\rho} \cdot \vec{C}$ et F = B - R

Représentations géométriques 2D de l'anomalie du champ total (F) et de l'anomalie de projection (F_1)

1 – Les fonctions magnétiques caractéristiques

1.1 – Définitions : Anomalie du champ total et Anomalie de projection
1.2 – Comparaison entre Anomalie du champ total et Anomalie de projection
1.3 – Les fonctions caractéristiques : Potentiels, Superpotentiels et Tenseurs

1.2.2 Estimation numérique de l'écart entre F et F₁

Cas du dipôle induit $F_{k+1} = F_1 + \frac{1}{2R} \left(C^2 - F_k^2 \right) + O\left(\frac{C^{k+1}}{R^k} \right)$ $F_{1} = F - \frac{1}{2R} \left(C^{2} - F^{2} \right) \quad (Lourenço, 1973)$ $F_1 \leq F$ Inclinaison et amplitude de F variables 9000 9000 400 8000 8000 350 200 **Amplitude** 6000 Amplitude 90009000 (D = 15°) 300 150 250 5000 5000 200 4000 4000 100 150 3000 3000 100 2000 2000 50 50 1000 1000 0 40 20 60 80 20 40 60 80 nT nT Inclinaison en degrés Inclinaison en degrés Ecart de 5 % **Différences maximales Différences maximales** Ecart de 2 % entre F, estimée et entre F et F1 F, calculée par le modèle

1.3.1 Les fonctions magnétiques : Potentiels et Superpotentiels

Hors des boucles de courants, les deux équations de Maxwell dans le vide s'écrivent en statique

1.3.3 Relations de passage dans le domaine spatial

1 - Les fonctions magnétiques caractéristiques

1.2 – Comparaison entre Anomalie du champ total et Anomalie de projection
1.3 – Les fonctions caractéristiques : Potentiels, Superpotentiels et Tenseurs

1.3.5 Les grandeurs en méthodes potentielles

1.3.5 Les grandeurs en méthodes potentielles

- 1- Les fonctions magnétiques caractéristiques
- ► 2- Superpotentiel et Tenseur de l'Anomalie Magnétique : Applications
- 3- Prospection aéromagnétique du Bassin de Franceville
- 4- Conclusions et perspectives

2.1 Utilisation des Superpotentiels en Modélisation

2.2.1 Localisation horizontale : Composantes du TAM

2.2.1 Localisation horizontale : Composantes du TAM

2.2.1 Composantes du Tenseur du Gradient Magnétique

2.2.1 Composantes du Tenseur du Gradient Magnétique

299

2.2.3 Géométrie : Indice de dimensionnalité du TAM

$$I_{d} = -\frac{27T_{3}^{2}}{4T_{4}^{3}} \quad \text{avec}: \ T_{4} = \lambda_{1}\lambda_{2} + \lambda_{2}\lambda_{3} + \lambda_{1}\lambda_{3} \quad \text{et} \quad T_{3} = -\lambda_{1}\lambda_{2}\lambda_{3} \qquad (Pedersen, 1990)$$

Indice de dimensionnalité du Tenseur de l'Anomalie Magnétique

2- Superpotentiels et Tenseur de l'Anomalie Magnétique :		
Applications		

2.1 – Utilisation des Superpotentiels en Modélisation

2.2 – Utilisation du Tenseur de l'Anomalie Magnétique en Inversion

2.2.3 Profondeur : TAM et Superpotentiel

2- Superpotentiels et Tenseur de l'Anomalie Magnétique : Applications 2.1 – Utilisation des Superpotentiels en Modélisation

- 1- Les fonctions magnétiques caractéristiques
- 2- Superpotentiels et Tenseur de l'Anomalie Magnétique : Applications
- ► 3- Prospection aéromagnétique du Bassin de Franceville
- 4- Conclusions et perspectives

3.1.1 Levés aéromagnétiques dans la région de Franceville

Localisation générale des différents levés sur le territoire gabonais et dans le Bassin de Franceville

	3.1 - Présentation générale du Bassin	
3 - Prospection aéromagnétique du Bassin de Franceville	3.2 - Recherche des limites et du toit du socle	206
	3.3 - Recherche des directions NO-SE	300

3.1.2 Structuration générale du Bassin de Franceville

Carte d'anomalie du champ total (CGG 1983)

Zone d'étude : secteur Oklo

(D'après Feybesse, 1998)

Bassin sédimentaire, gréso-pélitique, du protéro-zoïque reposant sur un socle cristallin archéen (2.7 Ga).

	3.1 - Présentation générale du Bassin	
3 - Prospection aéromagnétique du Bassin de Franceville	3.2 - Recherche des limites et du toit du socle	207
	3.3 - Recherche des directions NO-SE	307

3.1.2 Structuration générale du Bassin de Franceville

Carte de la dérivée horizontale du tilt angle

Gisements d'uranium

Opérateur de dérivation horizontale du tilt angle :

(Miller et Singh, 1994)

3.1.2 Structuration générale du Bassin de Franceville

Carte d'analyse structurale

Gisements d'uranium

Trois structurations principales :

Directions régionales de l'orogenèse éburnéenne.

¢

Deux grands types accidents : EO et s'infléchissant NO-SE

Tectonique extensive en horsts et grabens subsidents pendant le dépôt du Francevillien.

Mise en place d'un réseau de filons de dolérite NS et EO entre 700 et 900 Ma.

3.1.3 Potentiel uranifère du Bassin de Franceville

(d'après Matthieu, 2006)

Détection directe impossible : contraste de susceptibilité trop faible ~ 10⁻⁵ SI.

3.1.4 Modèle métallogénique de l'uranium Francevillien

Contrôle Tectonique

Modèle métallogénique de l'uranium Francevillien

(modifié d'après Matthieu, 2001)

oscillations du socle

Gisements d'uranium

(Gauthier-Lafaye, 1986)

3 - Prospection aéromagnétique du Bassin de Franceville

m

Topographie

	3.1 - Présentation générale du Bassin
3 - Prospection aéromagnétique du Bassin de Franceville	3.2 - Recherche des limites et du toit du socle
	3.3 - Recherche des directions NO-SE

Etudier la donnée grande longueur d'onde pour caractériser les structures profondes

3 - Prospection aéromagnétique du Bassin de Franceville

3 - Prospection aéromagnétique du Bassin de Franceville

3.1.6 Comparaison entre F et F₁ : Levé aéroporté

3.2.1 Etude du signal grande longueur d'onde

3.2.2 Modélisation/Inversion 2D par la méthode de Talwani

3.2.2 Modélisation/Inversion 2D par la méthode de Talwani

3.2.2 Modélisation/Inversion 2D par la méthode de Talwani

3 - Prospection aéromagnétique du Bassin de Franceville

3 - Prospection aéromagnétique du Bassin de Franceville

3.3.1 Tenseur de l'Anomalie Magnétique

Cartes de la dérivée du tilt angle de chaque composante

3.3.1 Tenseur de l'Anomalie Magnétique

Cartes d'analyse structurale de chaque composante

3.3.1 Tenseur de l'Anomalie Magnétique

3 - Prospection aéromagnétique du Bassin de Franceville

3 - Prospection aéromagnétique du Bassin de Franceville

3.3.3 Réinterprétation de la carte structurale francevillienne

3 - Prospection aéromagnétique du Bassin de Franceville

- 1- Les fonctions magnétiques caractéristiques
- 2- Superpotentiels et Tenseur de l'Anomalie Magnétique : Applications
- 3- Prospection aéromagnétique du Bassin de Franceville
- 4- Conclusions et perspectives

Conclusions

Perspectives

Méthode magnétique appliquée à l'exploration multi-échelle du Bassin de Franceville

Merci de votre attention !

Steel-Magnesium Dipole (N/S)

de Carl André (artiste américain minimaliste né en 1935)