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Where are we? 
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Overview 
1.  The physical process of Glacial Isostatic Adjustment (GIA) 

–  Last glacial cycle 
–  Physical process of solid earth 
–  Interplay of solid earth, ocean and ice sheets 

2.  Lateral heterogeneity 
–  Variations of lithosphere thickness + plate boundaries 
–  Consideration of non-linear rheologies (in prep.) 

3.  GIA induced geocenter motion 
–  Influence of viscosity structure 
–  Influence of glaciation history 
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Features of GIA 
modelling 

  S-FE formulation (Martinec, GJI, 
2000) 
•  incompressible 
•  self-gravitating 
•  non-rotating 
•  hydrostatically pre-stressed 

 

  Uniqueness conditions 
•  centre of mass 
•  no surface net-rotation 






  PREM structure for shear modulus 
and density 

  Viscosities:   ηUM = lateral variable, 
     ηLM = 1 x 1022 Pa s 

  Elastic lithosphere of variable 
thickness  
Predefined ice history (ICE5G) 
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Numerical modeling 

•  Initial boundary-value problem of viscoelastic relaxation 
(Martinec, 2000) 
–  Field equations of momentum 
–  Linearly viscoelastic material (Maxwell-body) 
–  Continuity equation (incompressibility) 
–  Potential equation 

•  Boundary and interface conditions 
–  Welded continuum of lithosphere and mantle 
–  Buoyancy and free slip at CMB and surface 

•  Weak formulation for explicit time-differencing scheme 
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Last glacial cycle 

•  Glaciated regions on northern 
hemisphere: 
–  North America, Greenland 
–  Fennoscandia 

•  On southern hemisphere 
–  Antarctica 

21 kyr b.p. 

Ice thickness (m) 
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Earth response to glacial 
loading (GIA) 

•  Response to glacial loads 
–  Extension: O (1000 km) 
–  Thickness: O (1 km) 
–  Period: O (100 kyr) 

•  Last glaciation terminated 
8000 yr BP 

•  Present-day adjustment 
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Interplay of solid earth, 
ocean and ice sheets 
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Features of earth models  

•  Standard models considered in GIA 
–  Elastic lithosphere overlaying viscoelastic mantle 
–  Materially incompressible 
–  1D stratification 
–  Linear Maxwell viscoelasticity 
–  Normal mode theory 

•  Non-standard models 
–  Compressibility 
–  Lateral viscosity variations 
–  Stress-dependent viscosity 
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Laterally variable 
earth models 

•  Lateral variations of lithosphere thickness 
–  Influence of GIA on plate motions 

•  Regionally varying response to glacial loading 
–  Differences between Laurentide, Fennoscandia 
–  Response in regions with strong tectonic features like Alaska, 

Iceland, Patagonia, Antarctic Pen. 
•  Lateral variations of mantle viscosity 

–  Dichotomy between W- and E Antarctica 
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Thickness of  
elastic lithosphere 

•  Depth defined by 
characteristic isotherm 
(1100 ºC) 

•  Mosaic  
–  Continental lithosphere 

from thermal data 
(Artemieva, 
Tectonophysics, 2006) 

–  Oceanic lithosphere from 
ocean floor ages (Müller 
et al., JGR, 1997) 
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1D earth structure  
–  standard viscosity 

model with 
   ηUM = 6 x 1020 Pa s   

ηLM = 1 x 1022 Pa s 
–  ICE3G history 
–  fixed coastlines 

Induced surface motion 
3D earth structure 

–  plate boundaries 
defined as 200 km 
wide low-viscosity 
intervals 

–  variable thickness 
of elastic 
lithosphere 

–  1D mantle 
–  ICE3G history 
–  fixed coastlines 



(13) 

V Klemann 

GIA and 3d 
viscosity 
structure 

University Strasbourg, Seminar, Sep. 9, 2011 

Cross section I 

LIS
 GIS

FIS
MOR


Mid Ocean Ridge 
(MOR) 
Ice sheets: 
Laurentide (LIS) 
Greenland (GIS) 
Fennoscandia (FIS) 
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Degree variances of 
surface motion 

Influence of plates 
–  Equipartitioning of 

spheroidal and 
toroidal component of 
GIA induced horizontal 
motions for j > 3 

–  Equipartitioning 
appears in plate 
motions driven by 
convective flow (e.g. 
Čadek & Ricard, EPSL, 
1992) 

–  Toroidal motion 
vanishes for  j = 1 due 
to uniqueness 
condition of no surface 
net-rotation  

vertical 

horizontal 

Klemann et al. 2008, J. Geodyn. 
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Divergence and vorticity 

Klemann, et al., 2008, JGdyn 
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MOR


Influence of mid ocean 
ridge 

•  Vertical displacement 
–  small variation 

•  Horizontal displacement 
–  velocity jump of > 1 mm/yr across 

the MOR 
•  But, this is only small perturbation 

to the observed sea-floor spreading 
of 7 cm/a in this region 
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GIA induced plate motion 

•  GIA induced motion 
–  < 10 % of observed plate 

motion 
–  above accuracy of 

determined plate motion 

Model Lon.(ºE) Lat. (ºN) Ω (º/
Myr) 

ITRF- 
2005 

–87.4 
±0.6 

 –4.3 
±0.9 

0.192 
±0.002 

1-D +1.1 –0.0 +0.002 
3-D +2.4 +3.6 +0.008 

Motion of NA plate determined 
from ITRF 2005  (Altamimi et al., 
JGR, 2007) and corrections  due 
to GIA 

North American 
plate 

Lon = 136.5 ºE. Lat=-39.8 ºN, Ω = 0.015 º/Myr 

3D 
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Summary 

•  Lateral variations in lithosphere structure are present 
•  The applied method of specral—finite elements allows us to 

consider lateral viscosity variations in a quite efficient way 
•  Separating the lithosperic plates by visous zones: 

–  Toroidal surface motion of similar amplitude like spheroidal 
horizontal component is induced 

–  Velocity field becomes discontinuous across plate boundaries 
•  GIA induced rotation of continental plates 

–  Induced rates modify observed rates at the level of accuracy 
–  GIA induced volocity fields are largely modified by 3d structure 

•  Future plans 
–  Consideration of non-linear rheology. I/O is prepared (Thank you 

Gabi !) 
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Non-linearity 

•  Considering experimentally inferred rheological data in GIA 
modelling 

•  Power-law creep in lithosphere and upper mantle 
•  Largest effect of non-linearity appears where large shear 

stresses are present. 
–  During the deglaciation phase 
–  At the load margins 
–  Where strong lateral variations in earth structure are present 

•  Composite rheology 
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Geocentre motion 

•  Back to 1d modelling 
•  Convention  

–   uGC := uCF – uCM 

•  GIA contribution 
–  Influence of viscosity structure on present day motion 
–  Influence of glaciation history 
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Why 1d is sufficient 
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CM and CF motion due to 
GIA 

•  Surface loading 
–  CM towards load 
–  GC in opposite direction 

•  Viscoelastic compensation 
–  downward displacement 
–  CM away from load 
–  CF away from load 

•  After deglaciation 
–  CM first away from load 

area than moves towards 
load centre 

–  CF towards load area 
CM CF 
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GC, CM and CF motion 

•  Evolution of motions 
in the CE realization 
during last glacial 
cycle 
–  CF is delayed and 

opposite to CM 
–  amplitude of GC is 

largest during LGM 
and reaches 70 m 

–  after deglaciation 
CM is negligible and 
GC is dominated by 
the delayed CF  

0=∫ dVV uρ
LGM 

end of 
degl. 
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Influence of lower-mantle 
viscosity on GC motion 

•  Variation in direction of GC motion ~ 2000 km 
•  Velocity of motion varies by almost one magnitude 
•  largest sensitivity between 1021 and 1023 Pa s 

VM2 

LM+ 
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Influence of upper-mantle 
viscosity on GC motion 

•  Influence on direction of motion is much smaller 
•  At 3 x 1020 Pa s amplitude is largest and decreases linearly on 

logarithmic scale 
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Influence of lithosphere 
thickness on GC motion 

•  Influence of lithosphere thickness on direction is negligible 
•  Velocity decreases linearly with lithosphere thickness 
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Influence of glaciation 
history on GC motion 

•  Main areas of Pleistocene glaciation 
are 
–  Laurentide 
–  Fennoscandia 
–  Antartica 

•  Considered earth models 
1.  LM+ (1022 Pa s)  
2.  VM2 (4 x 1021 Pa s) 

•  Experiments to analyse sensitivity 
a)  Variation of load thickness where total  

mass of ice is conserved 
b)  Variation of load thickness without 

conservation of ice mass 

Laur 

Fenn 

Ant 
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Influence of glaciation 
history on model LM+ 

•  Variation of Laurentide shows largest influence 
•  When total mass is conserved variations are larger 
•  Replacing Ant by IJ05 has strong influence 
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Deglaciation history of 
Antarctica 

•  IJ05 (Ivins & 
James, 2005) 

•  Half the amount of 
ice than ICE-5G 

•  < 8 kyr, mass of 
IJ05 is larger than 
ICE-5G 

IJ05 
ICE-5G 
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Influence of glaciation 
history on model VM2 

•  Pattern is similar 
•  Amplitudes are reduced due to the much smaller lower mantle 

viscosity 
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Summary 
•  Predicted contribution of GIA to present time GC motion 

–  is dominated by relaxation process 
•  Direction of motion is robust 

–  towards western part of Hudson Bay 
–  amplitude of ~ 0.1 to 1 mm/yr 

•  Influence of mantle-viscosity structure 
–  relaxation process in lower mantle is dominating 
–  increase of viscosity from 1021 to 1022 Pa s increases geocenter 

motion from ~ 0.1 to 1 mm/yr  
•  Influence of glaciation history 

–  Laurentide ice sheet is dominant 
–  Sensitivity to termination of Antarctic deglaciation 

Klemann & Martinec (2009, Tectonophysics) 
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Thank you for your 
attention 

V Klemann,  
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