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Fig. 2. Some possible locations of mantle reservoirs and relationship to mantle dynamics.
Convective features: blue, oceanic plates/slabs; red, hot plumes. Geochemical reservoirs: dark green,
DMM; purple, high 2He/*He (“primitive”); light green, enriched recycled crust (ERC). (A) Typical
geochemical model layered at 660 km depth (7). (B) Typical geodynamical model: homogeneous
except for some mixture of ERC and primitive material at the base. (C) Primitive blob model (77)
with added ERC layer. (D) Complete recycling model (83, 84). (E) Primitive piles model [developed

from (85)]. (F) Deep primitive layer (86). Tackley 2000
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Part 1: where do slabs go?
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Figure 1. Many models of convection in the mantle, such as the
two shown here in schematic cross section, have been proposed to
account for the movement of the tectonic plates and for other
features observed at the surface. Among the issues to be resolved
is whether convective flow crosses between the upper and lower
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mantle at 670-km depth, where there is a sharp discontinuity in
seismic velocities. Until very recently, the available data have
been insufficient to resolve these issues; however, an expanded
global network of seismographic stations now makes it possible
to map details in the mantle.
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ABSTRACT

Two new global high-resolution
models of the P-wave and S-wave
seismic structure of the mantle were
derived independently using different
inversion techniques and different data
sets, but they show excellent correlation
for many large-scale as well as smaller
scale structures throughout the lower
mantle. The two models show that
high-velocity anomalies in the lower
mantle are dominated by long linear
features that can be associated with the
sites of ancient subduction. The images
suggest that most subduction-related
mantle flow continues well into the
lower mantle and that slabs may ulti-
mately reach the core-mantle boundary.
The models are available from anony-
mous ftp at maestro.geo.utexas.edu in
directory pub/grand and at brolga.mit.
edu in directory pub/GSAtoday.

2770 km depth

INTRODUCTION

Since forming about 4.5 Ga, planet
Earth has been cooling by means of rela-
tively vigorous convection in its interior
and by conductive heat loss across the
cold thermal boundary layer at the top
of the mantle (mainly the oceanic litho-
sphere). The primary force driving convec-
tion is the downward pull of gravity on
the cold, dense lithosphere resulting in
downwellings of slabs of subducted litho-
sphere. Understanding the nature of the

Tomography continued on p. 2

2700 km depth

] B
FARALLON SLAB

Figure 1. Cross sections of mantle P-wave (A) and S-wave (B) velocity variations along a section
through the southern United States. The endpoints of the section are 30.1°N, 117.1°W and 30.2°N,
56.4°W. The images show variations in seismic velocity relative to the global mean at depths from the
surface to the core-mantle boundary. Blues indicate faster than average and reds slower than average
seismic velocity. The large tabular blue anomaly that crosses the entire lower mantle is probably the
descending Farallon plate that subducted over the past ~100 m.y. Differences in structure between the
two models in the transition zone (400 to 660 km depth) and at the base of the mantle are probably
120°W 100°W 80°W 60°W  40°W  due to different data sampling in the two studies.

Grand and van der Hilst (mid 1990s)







sinking and floating slabs

(—0.8%) (+0.8%)

Albarede and van der Hilst, 2002




deep slabs: mapped by tomography
and predicted by geodynamics
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“670” as a thermal boundary layer
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Fig. 2. Four examples of plumes that widen or even get stuck below the 670 km discontinuity. Resolution tests similar to the one shown in Fig. | show
that the broadening or deflection at the top of the mantle is resolved for each of these plumes. The temperature scale is the same as in Fig. 1 (top).

Nolet, Karato and Montelli, 2006




Part 2: the origin of hotspots




(work by Boschi, Becker and
Steinberger 2007, 2008, plus some

new results by Thorsten Becker)




Plumes as the origin of hotspots (Wilson 1971)
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Plume clusters
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Fig. 3. Isovelocity surfaces (encompassing negative perturbations of 1.1% or more) of the Pacific superplume.




Hotspot catalogue: dynamic models of corresponding plumes

vertical plumes: Np=40, <A>=1.95%, EV=1.85%, u=1.05, A=1.00




Resolving power of tomography

Plume model input Inversion output
input @ 50 km

synthetics

dus (o] dus ]

S body-wave data
from Simmons
and Grand. Noise
added before
inversion.




S tomographic models; 12 likely deep plumes; advection vs. no advection
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Significance of correlation evaluated with a Montecarlo approach
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Significance of correlation evaluated with a Montecarlo approach
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we use values of seismic
anomalies within dynamically

modeled plumes to evaluate
which tomography-imaged
plumes are likely to be real
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where are the hotspots likely to form from deep plumes?
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plume source location

Hotspot locations (circles), lowermost mantle
tomography. A “contour” (purple line) of LLSVPs is
identified that maximizes the number of nearby
hotspots (purple circles)

Same, but hotspot locations are replaced by the
locations of advected plume sources: LLSVP-
I = 15% (_‘ | 2 contour collapses towards center of LLSVP itself
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Part 3: upper mantle and transition zone
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surface-wave tomography
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improvement in database




new model, global view

Voigt (this study
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1000km

Piromallo & Morelli 2005




adaptive-resolution tomography
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Julia Schifer, 2009




adaptive-resolution tomography
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adaptive-resolution tomography

Julia Schifer, 2009




Rayleigh 75s and thermal thickness of lithosphere

correlation with temperature at 100km depth
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contribution from ambient noise data

teleseismic data ambient-noise data
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summary

. mapped slabs are globally correlated with expected ones
. mapped slow anomalies are correlated with advected plume

distribution, limited to mantle under Africa and central
Pacific

. the next step to better understand the transition zone is to

combine body and surface waves, including overtones

. the next step in surface-wave tomography is to identify

models that explain both ambient-noise and teleseismic data.




4. five slides on finite-frequency tomography
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Sensitivity kernels: how
they look like

Love waves, 150 s period. Source and receiver on
the equator, 90° apart. Reference model is PREM.

adjoint method (membrane waves) analytical kernel from e.g. Spetzler et al. (2002)
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