

Géodynamique et aléa sismique en domaine continental stable: Exemple de l'Est Américain

Stéphane Mazzotti

Géosciences Montpellier, Univ. Montpellier 2

<u>Collaborateurs:</u> J. Adams, J. Henton, *Geol. Surv. Canada*; J. Townend, *Victoria Univ. Wellington*; P. Wu, *Univ. of Calgary*; A. Baird, *Queen's Univ.*

Domaines continentaux stable (intra-plaque) = 2/3 de la surface des continents

Zones stables, se déformant pas / peu

Domaines continentaux stable (intra-plaque) = 2/3 de la surface des continents

Zones stables, se déformant pas / peu

Mais, sismicité & aléa sismique potentiellement fort

Zones stables, se déformant pas / peu

Mais, sismicité & aléa sismique potentiellement fort

e.g., Graben du Rhin

Problématique fondamentale:

Quels facteurs contrôlent la distribution et l'amplitude de la déformation en domaines intra-plaque?

- Rôle de l'héritage structurale?
- Etat de contrainte et bilan de forces?

- Taux de déformation et de sismicité à court et long terme?

- Aléa sismique?

Exemple de l'Est Américain

1) Sismicité et géodynamique de l'Est Américain

2) Etat de contraintes

- => Mécanismes au foyer
- => Rotations de contraintes en zones sismiques
- => Implications géodynamiques

3) Taux de déformation

- => Mesures GPS Vallée du St. Laurent
- => Est Américain
- => Relations contraintes déformation

Background Seismicity and Large Earthquakes

18 M ≥ 6 since ~1600

Concentrations in "hot spots", e.g.

* New Madrid (3 M ≥ 7 in 1811-1812)

* Charlevoix (5 M \geq 6 since 1650)

Mazzotti, 2007, GSA Special Paper 425

Seismic activity clusters along paleo-tectonic zones:

* Atlantic rifted margin (~180 Ma)

Mazzotti, 2007, GSA Special Paper 425

Seismic activity clusters along paleo-tectonic zones:

* Mesozoic rift / extension basins (~200 Ma)

Mazzotti, 2007, GSA Special Paper 425

Seismic activity clusters along paleo-tectonic zones:

* lapetus rift structures (~600 Ma)

Mazzotti, 2007, GSA Special Paper 425

Seismic activity clusters along paleo-tectonic zones:

Recurrence of $M \ge 6.0$

T ≈ 10 yr in paleotectonic zones

T ≈ 2500 yr in craton

Mazzotti, 2007, GSA Special Paper 425

Mazzotti, 2007, GSA Special Paper 425

Seismic activity clusters along paleo-tectonic zones:

"Weak" deforming zone between two "rigid" blocks

Mazzotti, 2007, GSA Special Paper 425

Relation to Lithosphere Strength

Thermal state of the lithosphere (heat flow as a proxy for crustal / upper mantle "weakness")

Limited data coverage / limited resolution

No obvious relationship to seismicity

Mazzotti, 2007, GSA Special Paper 425

Adams and Halchuk, 2001

Exemple de l'Est Américain

1) Sismicité et géodynamique de l'Est Américain

2) Etat de contraintes

- => Mécanismes au foyer
- => Rotations de contraintes en zones sismiques
- => Implications géodynamiques

3) Taux de déformation

- => Mesures GPS Vallée du St. Laurent
- => Est Américain
- => Relations contraintes déformation

Borehole Stress Measurements

WSM borehole max. horiz. compr. Stress orientation ($\sigma_{\rm H}$) ~ NE-SW

Related to tectonic driving forces

Parallel to rift in St. Lawrence, oblique in central U.S.

Mazzotti and Townend, 2010, Lithosphere

Earthquake Focal Mechanisms

Compilation of 300+ focal mechanisms

10 major seismic zones

- 6 inside lapetus Rift

- 4 outside

Mazzotti and Townend, 2010, Lithosphere

(a)

(c)

- Bayesian inversion of focal mechanisms
- Allows statistical integration of:
- Fault / auxiliary uncertainty
- FM limited constraint on stress
- FM error (eg. 20°)

Mazzotti and Townend, 2010, Lithosphere

Borehole data:

- Blue (near seismic zone)
- Black (not used)

FM stress results:

- Red = median
- Pink = 90% CI

Mazzotti and Townend, 2010, Lithosphere

4 (maybe 6) zones: seismological $\sigma_{\rm H}$ sub-parallel to borehole $\sigma_{\rm H}$

Collinear within 90% confidence interval (10-20°)

Mazzotti and Townend, 2010, Lithosphere

4 (maybe 6) zones: seismological $\sigma_{\rm H}$ sub-parallel to borehole $\sigma_{\rm H}$

New Madrid:

Interesting case of 2003 Bardwell sequence (Horton et al., 2005)

Mazzotti and Townend, 2010, Lithosphere

3 zones:

* Low St. Lawrence
* Charlevoix
* Central Virginia

Seismological $\sigma_{\rm H}$ rotated 30-40° clockwise relative to nearby borehole $\sigma_{\rm H}$

Charlevoix

Charlevoix Seismic Zone

50x100 km along Iapetus Rift

Two main earthquake clusters (NW and SE)

60+ foc. mech.

Charlevoix Seismic Zone

NW cluster:

Seismological $\sigma_{\rm H}$ parallel to borehole $\sigma_{\rm H}$

SE cluster:

Seismological $\sigma_{\rm H}$ rotated 45° ckw.

Potential Causes of Stress Rotation in Seismic Zones:

Implications of systematic rotations on stress level in the crust and in seismic zones

* $\sigma_{\rm H}$ rotation of 30-50° requires a stress perturbation 80-110% of regional diff. stress (cf. Zoback, 1992)

* Borehole stress measurements indicate incipient frictional failure with μ > 0.6 and near hydrostatic Pf

>> Stress perturbation of 160 – 250 MPa at mid-crustal depth

Potential Causes of Stress Rotation in Seismic Zones:

Implications of systematic rotations on stress level in the crust and in seismic zones

* stress perturbation 80-110% of regional diff. stress * Borehole μ > 0.6 and near hydrostatic Pf

>> Stress perturbation of 160 – 250 MPa at mid-crustal depth

What mechanisms can cause ~200 MPa stress perturbations?

- over 30 50 km distances (Charlevoix)
- over distances of 1000 1500 km (Eastern US)

Potential Causes of Stress Rotation in Seismic Zones: Postglacial Rebound & Weak Lithosphere

Reference PGR Model:

 $\sigma_{\text{H}} \thicksim \sigma_{\text{h}}$

sub-parallel to tectonic stress (NE-SW)

Introduce a weak (lower viscosity) upper mantle

Wu and Mazzotti, 2007, GSA Special Paper 425

Potential Causes of Stress Rotation in Seismic Zones: Postglacial Rebound & Weak Lithosphere

Weak Zone PGR Model:

>> Stress concentration >> 40-60° ckw. rotation of $\sigma_{\rm H}$

Wu and Mazzotti, 2007, GSA Special Paper 425

Potential Causes of Stress Rotation in Seismic Zones: Weak Lithosphere

Preferential orientation of olivine crystals in zone of high deformation

>> Anisotropy of upper mantle viscosity

>> Concentration of stress and strain

Tomassi et al., 2009

Potential Causes of Stress Rotation in Seismic Zones:

Guiding Faults with Low Effective Friction

Mechanical model of stress channeling between weak ($\mu_{eff} < 0.1$) rift faults around impact crater ($M_{C} = \frac{1}{4} M_{B}$)

>> Stress (and seismicity)
concentration + 10 - 20%

 $>> 15 - 20^{\circ}$ ckw. rotation of $\sigma_{\rm H}$

A. Baird, 2010, Ph.D. thesis, Queens University Potential Causes of Stress Rotation in Seismic Zones:

Implications of systematic rotations on stress level in the crust and in seismic zones

* stress perturbation 80-110% of regional diff. stress * Borehole μ > 0.6 and near hydrostatic Pf

>> Stress perturbation of 160 – 250 MPa at mid-crustal depth

What mechanisms can cause ~200 MPa stress perturbations?

- over 30 50 km distances (Charlevoix)
- over distances of 1000 1500 km (Eastern US)

>> Require "weak" upper mantle and / or upper crustal faults

Exemple de l'Est Américain

1) Sismicité et géodynamique de l'Est Américain

2) Etat de contraintes

- => Mécanismes au foyer
- => Rotations de contraintes en zones sismiques
- => Implications géodynamiques

3) Taux de déformation

- => Mesures GPS Vallée du St. Laurent
- => Est Américain
- => Relations contraintes déformation

16 campaign sites (Canadian Base Network)

4 – 5 occupations over 7 – 11 years (1994/1996 – 2005)

Good geometry for crustal strain

- Regional
- Local (CHV & BSL)

Mazzotti et al., JRG 2005

Regional strain = E-W shortening

Agrees with FM stress (BSL & SE cluster)

Resolved at 1 sigma, e.g. Charlevoix:

- $3.8 \pm 2.3 \times 10^{-9} \text{ yr}^{-1}$
- 0.7 ± 0.4 mm/yr

Mazzotti et al., JRG 2005

- Resolution ~1 mm/yr at 95%
- Cannot discriminate models:
- Localized strain, e.g. elastic loading of locked thrust from far-field

- Resolution ~1 mm/yr at 95%
- Cannot discriminate models:
- Localized strain, e.g., elastic loading of locked thrust from far-field
- Distributed aseismic strain

- Resolution ~1 mm/yr at 95%
- Cannot discriminate models:
- Localized strain, e.g. elastic loading of locked thrust from far-field
- Distributed aseismic strain
- Localized strain, e.g. elastic loading of locked thrust from large-scale bending

Charlevoix GPS vs. seismicity rates

- $3.8 \pm 2.3 \times 10^{-9} \text{ yr}^{-1}$
- 0.7 ± 0.4 mm/yr

>> GPS-based and catalog statistics agree for $M \ge 6$

> Potential integration of GPS data in seismic hazard

Mazzotti et al., JRG 2005

Denser permanent & campaign GPS network from Charlevoix to Montreal

- 9 perm. sites
- 55 camp. sites

- 55 camp. Sites
- * 35 bedrock chained mast
- * 6 bedrock / concrete – tripod
- * 14 soil tripod

2-3 surveys so far

PPP solution

Velocities coherent with regional continuous stations at ~1.0 mm/yr level

Both in Hz and Vt

Not bad for 3 surveys over 4 years!

Charlevoix sub-network

NW-SE shortening rate $7.5 \pm 3.0 \times 10^{-9} \text{ yr}^{-1}$ $\sim 0.4 \pm 0.2 \text{ mm/yr}$

Consistent with previous sparse measurements

Consistent with seismicity

NE-SW extension rate ?

Quebec sub-network

E-W shortening rate 20.1 \pm 4.8 x 10⁻⁹ yr⁻¹ ~1.0 \pm 0.3 mm/yr

Artifact of short measurement period?

Not consistent with seismicity !

TO BE CONTINUED

NAREF 2005 solution

- 477 GPS velocities
- Perm. geodetic RF stations
- Perm. 2nd-order stations
- Camp. CBN network

- <u>Step 1</u>
- Smoothed interpolated velocity field
- (adaptive gaussian filter)
- Efficient at extracting longwavelength signals

- <u>Step 1</u>
- Smoothed interpolated velocity field
- Vertical velocity field shows clear postglacial rebound features
- + other local signals

Vertical velocity field from ICE5-G, VM2 model

Still some work to do... especially in northern US

<u>Step 2</u>

- Spatial derivative
- > Full strain rate tensor
- Radial shortening at paleo ice margin
- E-W extension in Midwest
- Local features (e.g. S Texas)

Strain rate field from ICE5-G, VM2 model

Poor match in central Canada and US

Fair agreement in ^{40°} Maritimes – NE US ^{35°}

- <u>Step 2</u>
- Spatial derivative
- > Full strain rate tensor
- Max. strain rate = max (e1, e2, e1+e2)
- Little to no correlation with seismicity

US Intraplate Strain Rates

Low Emax in New Madrid, Eastern Tennessee, Charleston

But:

- Method tuned for long-wavelength signals (> 100 km)
- Poor local site coverage

Continental Intraplate Strain Rates / Stress

GPS max horiz. shortening (blue)

>> mainly radial to paleo icesheet

VS.

Borehole max. horiz. compression (green)

>> mainly E-W to NE-SW

US Intraplate Strain Rates / Stress

GPS max horiz. shortening (blue)

VS.

Borehole max. horiz. compression (green)

>> Present-day strain rate mostly elastic >> Link to seismicity?

Conclusions (1) Etat de contrainte en domaine continental stable

 * S_H en zones sismiques colinéaire ou tourné de 30 – 50 $^{\circ}$ (horaire) relatif au S_H régional

* Rotation de contrainte a lieu sur de faible distances (20 – 50 km), mais cohérente à grande échelle (+1000 km)

Conclusions (1) Etat de contrainte en domaine continental stable

 * S_H en zones sismiques colinéaire ou tourné de 30 – 50 $^{\circ}$ (horaire) relatif au S_H régional

* Rotation de contrainte a lieu sur de faible distances (20 – 50 km), mais cohérente à grande échelle (+1000 km)

>> Mécanismes de perturbation des contraintes en zones sismiques ?

- GIA, héritage structural
- Requière une résistance (friction) faible ?

Conclusions (2) Taux de déformations

* Bon accord des taux de déformation GPS et sismique dans les zones les plus actives (Charlevoix et Bas St. Laurent)

* Pas de corrélation générale entre taux de déformation GPS et sismicité (e.g., New Madrid)

Conclusions (2) Taux de déformations

* Bon accord des taux de déformation GPS et sismique dans les zones les plus actives (Charlevoix et Bas St. Laurent)

- * Pas de corrélation générale entre taux de déformation GPS et sismicité (e.g., New Madrid)
- * Modèle de « fuite » de la déformation élastique (GIA?) dans les zones les plus faibles?

Conclusions (2) Taux de déformations

* Bon accord des taux de déformation GPS et sismique dans les zones les plus actives (Charlevoix et Bas St. Laurent)

- * Pas de corrélation générale entre taux de déformation GPS et sismicité (e.g., New Madrid)
- * Modèle de « fuite » de la déformation élastique (GIA?) dans les zones les plus faibles?

?? Modèle physique pour expliquer les concentrations et taux de déformation et sismicité ??

1) Seismicity & Seismic Source Zones

Seismic moment and deformation rates based on earthquake statistics in historical vs. geological source zones

Historical source zones: very heterogeneous few high strain zones 0.0 – 2.5 mm/yr

Geological source zones: homogeneous no high strain zone 0.0 – 0.5 mm/yr

Mazzotti & Adams, JRG 2005