http://www.pmmh.espci.fr/~oramos/

Osvanny Ramos.

Main projects & collaborators

Slow crack propagation

L. Vanel, S. Ciliberto, S. Santucci, J-C. Géminard, J. Mathiesen

Criticality in Earthquakes. Good or bad for prediction?

Osvanny Ramos

- E. Altshuler
- K. J. Måløy

Scale invariance in Nature

Spatial domain

Temporal domain

Catastrophic events distributed following a power-law

IPG Strasbourg, Nov. 10, 2009

Fractals

The magnitude distribution of declustered earthquakes in Southern California

Leon Knopoff*

Department of Physics and Astronomy and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095 Contributed by Leon Knopoff, May 22, 2000

Because of its reputation of validity over a wide range of magnitudes, the log-linear Gutenberg–Richter (G-R) frequency-magnitude law of earthquake occurrence (1, 2)

$$\log_{10} N = a - bM \tag{1}$$

has been a simple paradigm for modeling the evolution of earthquake patterns. Eq. 1 is expressed in the power law form

$$N \sim E^{-b/\beta}$$
 [2]

through the intermediary of either a logarithmic energymagnitude relation derived originally by Gutenberg (3) or a logarithmic moment-magnitude relation (4, 5); $\beta \approx 3/2$ for both surface wave and local magnitudes in the magnitude range of this paper (3). Because of the presumed universality of local estimates of the exponent $b \approx 1$, and because of the scale independence implicit in Eq. 2, the model of self-organized criticality (SOC) to understand earthquake occurrence (6–9) has been proposed and discussed abundantly in recent years. The corre-

N (E) ~ E^{-2/3} $\int \int e^{-2/3 - 1} e^{-1.66}$ P(E) ~ E^{-2/3 - 1} = E

PNAS (2000)

Scale invariance in Nature

Spatial domain

Temporal domain

Catastrophic events distributed following a power-law

IPG Strasbourg, Nov. 10, 2009

Fractals

Scale invariance in Nature

Temporal domain

Catastrophic events distributed following a power-law

1 - Events reaching the size of the system. Interpreted as a *divergence of the correlation length.*

2 - The events distribute spatially forming fractals.

vs. Critical phenomena

At the critical point of a phase transition:

1 - The correlation length diverges.

2 - The system displays a fractal structure.

However,

Critical phenomena need a tuning!

Motivation

SELF-ORGANIZED CRITICALITY (SOC)

Cellular Automaton

BTW model (1987)

Does it really work? (SOC in real systems?)

Lab. experiments: sandpiles Quasi-periodic very large avalanches (big piles of sand)

Jaeger et al (1989), Held et al (1990), Rosendahl et al (1993)

Power-law distributed avalanches (very disordered piles)

Frette *et al* (1996), Altshuler *et al* (2001) (**b=-2**) (**b=-1.6**)

Models: <u>Earthquakes</u> (b=-2), Solar flares (b=-1.8), Superconducting vortices (b=-1.6) Evolution (b=-1.3), Stock markets (b=-1.8) ...

Labeling a system as SOC:

Catastrophic events and more frequent small events are a result of the same dynamics.

Intrinsic unpredictability as a heritage of <u>critical systems</u>.

Unpredictability of SOC avalanches

...the consensus of a recent meeting was that the Earth is in a state of self-organized criticality where any small earthquake has some probability of cascading into a large event.

Geller et al, Science 275, 1616 (1997)

Thus, any precursor state of a large event is essentially identical to a precursor state of a small event. The earthquake does not "know how large it will become".

Per Bak. in debates about Earthquake prediction, Nature (1999)

Outline:

"Avalanche prediction in a self-organized pile of beads" O. Ramos et al., Phys. Rev. Lett. (2009)

"Criticality in earthquakes. Good or bad for prediction?" O. Ramos, Tectonophysics. (accepted)

3- Conclusions and open questions

Experimental setup

Grains: 4 mm-diameter steel beads.

Spacing between glasses: 4.5 mm.

Experiment

Base: 60 cm long row of random spaced beads glued to the surface.

Camera: Canon D20: resolution: 20 pixels/bead diameter.

Statistics: 55000 dropping events.

Number of beads that have moved between two consecutive dropping events = Number of beads that don't have any neighbor at a distance $\leq 1/7$ diameter in the consecutive image.

Avalanche size (28422) = 984

Analysis of the avalanche time series

$$C_A(t) = \frac{\sum [s(\tau)s(\tau+t)] - \langle s(\tau) \rangle^2}{\sum [s(\tau) - \langle s(\tau) \rangle]^2}$$

s(t)=1 if size(avalanche)=L s(t)=0 if size(avalanche)=S, M

- Uncorrelated L events.
- Exponential decay of the waiting times between L events.
- Signs of foreshocks and aftershocks, but too weak in order to work as precursors of L events

Experiment

correlation between structure & avalanches

Simulations in an earthquake model

O.F.C.

Cellular Automaton

Phys. Rev. Lett. (1992)

-The Force is applied to every site at the same time.

-When a site reaches the threshold Its force goes to zero and a fraction $4^{*}\alpha$ of it is redistributed equally between its nearest neighbors.

	OFC	Ours
Source of randomness	Block thresholds have a single value. At t=0 random forces are imposed.	Thresholds distributed randomly following a Gaussian distribution with an standard deviation σ . When a block slips a new threshold is imposed.
Excitation	Force added "ad hoc" to excite the site closest to the threshold (speed→0) . Infinitely accurate tuning.	A quantum of force is added in each step (speed = constant).

O. Ramos et al., Phys. Rev.Lett. (2006)

Simulations

Classical critical phenomena

1- Divergence of the correlation length (ξ):

Ising Model

$$\left\langle C_A s(d,t) \right\rangle_t = \left\langle \frac{\sum \left(f(x,y) f(x',y') \right) - \langle f(x,y) \rangle^2}{\sum \left(f(x,y) - \langle f(x,y) \rangle \right)^2} \right\rangle_t$$

 $C_{AS}(d) \sim exp(d/\xi) \quad (\forall T \neq Tc)$

$$\xi = \left| t \right|^{-\nu} \quad t = (T - Tc)/Tc$$

Some basics

Classical critical phenomena

1- Divergence of the correlation length ($\boldsymbol{\xi}$):

$$\left\langle C_A s(d,t) \right\rangle_t = \left\langle \frac{\sum (f(x,y)f(x',y')) - \langle f(x,y) \rangle^2}{\sum (f(x,y) - \langle f(x,y) \rangle^2} \right\rangle_t \qquad \begin{array}{c} C_A s(d) \sim \exp(d/\xi) \\ (\forall \ T \neq Tc) \end{array} \right\rangle_t$$

2- Divergence of the correlation time (τ): Critical slowing down

$$C_{A}t(t) = \frac{\sum (f(t_{i})f(t_{i}+t)) - \langle f(t_{i}) \rangle^{2}}{\sum (f(t_{i}) - \langle f(t_{i}) \rangle)^{2}}$$

$$C_{A}t(t) \sim exp(t/\tau)$$

3- As the size of the system increases, the transition between the two states becomes sharper, and it is infinitely sharp in an infinite system.

$$\xi = |t|^{-\nu}$$
$$\tau = |t|^{-z\nu}$$
$$t = (T - Tc)/Tc$$
$$\tau = \xi^{z}$$

Some basics

Spatial autocorrelation function & correlation length

$$\left\langle C_A s(d,t) \right\rangle_t = \left\langle \frac{\sum \left(f(x,y) f(x',y') \right) - \langle f(x,y) \rangle^2}{\sum \left(f(x,y) - \langle f(x,y) \rangle \right)^2} \right\rangle_t$$

Simulations

Temporal corr (spatial autocorrelation function & Large avalanches)

$$Ct(t) = \frac{\sum (La(t_i)Cx(t_i + t)) - \langle La(t_i) \rangle \langle Cx(t_i) \rangle}{\sqrt{\sum (La(t_i) - \langle La(t_i) \rangle)^2 \sum (Cx(t_i) - \langle Cx(t_i) \rangle)^2}}$$

La(t)=1 if size(avalanche)=L La(t)=0 if size(avalanche)=S, M Cx(t)=C4(t), C8(t)

Structure still shows Quasi-periodicity.

Large oscillations of Cx(t) around L events.

Criticality ?

Simulations

Spatial autocorrelation function & correlation length ξ

- In average the system is not critical (the correlation length is small).

In principle, prediction is possible

Temporal correlation between structure & avalanches

Experiments

Simulations

Simulations

Can be "criticality" good for prediction?

Vol 461|3 September 2009|doi:10.1038/nature08227

nature

REVIEWS

Early-warning signals for critical transitions

Marten Scheffer¹, Jordi Bascompte², William A. Brock³, Victor Brovkin⁵, Stephen R. Carpenter⁴, Vasilis Dakos¹, Hermann Held⁶, Egbert H. van Nes¹, Max Rietkerk⁷ & George Sugihara⁸

Figure 5 | **Subtle changes in brain activity before an epileptic seizure may be used as an early warning signal.** The epileptic seizure clinically detected at time 0 is announced minutes earlier in an electroencephalography (EEG) time series by an increase in variance. Adapted by permission from Macmillan Publishers Ltd: Nature Medicine (ref. 3), copyright 2003.

Critical slowing down

IPG Strasbourg, Nov. 10, 2009

Discussions

Can be "criticality" good for prediction?

Can be "criticality" good for prediction?

Classifying catastrophic events in power-law distributed avalanches

"Many very small events and a few very large ones".

Energy balance:

$$\forall t \ E_{max} >> \langle E_{input} \rangle = \langle E_{dissip} \rangle = \langle E_{bulk} \rangle + \langle E_{boundaries} \rangle$$
$$\alpha S_{max} \qquad \qquad \alpha < s >$$

- Large b values are forbidden in dissipative slowly-driven systems!
- For small b values the system is not critical

IPG Strasbourg, Nov. 10, 2009

In general

PHYSICAL REVIEW E **79**, 051106 (2009)

Size distributions of shocks and static avalanches from the functional renormalization group

Pierre Le Doussal and Kay Jörg Wiese

Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, CNRS, 24 rue Lhomond, 75231 Paris Cedex, France (Received 20 January 2009; published 7 May 2009)

Interfaces pinned by quenched disorder are often used to model jerky self-organized critical motion. We study static avalanches, or shocks, defined here as jumps between distinct global minima upon changing an external field. We show how the full statistics of these jumps is encoded in the functional-renormalizationgroup fixed-point functions. This allows us to obtain the size distribution P(S) of static avalanches in an expansion in the internal dimension d of the interface. Near and above d=4 this yields the mean-field distribution $P(S) \sim S^{-3/2} - S^{3/4}S_m$, where S_m is a large-scale cutoff, in some cases calculable. Resumming all one-loop contributions, we find $P(S) \sim S^{-\tau} \exp(C(S/S_m)^{1/2} - \frac{B}{4}(S/S_m)^{\delta})$, where B, C, δ , and τ are obtained to first order in $\epsilon=4-d$. Our result is consistent to $O(\epsilon)$ with the relation $\tau=\tau_{\zeta}:=2-\frac{2}{d+\zeta}$, where ζ is the static roughness exponent, often conjectured to hold at depinning. Our calculation applies to all static universality classes, including random-bond, random-field, and random-periodic disorders. Extended to long-range elastic systems, it yields a different size distribution for the case of contact-line elasticity, with an exponent compatible with $\tau=2-\frac{1}{d+\zeta}$ to $O(\epsilon=2-d)$. We discuss consequences for avalanches at depinning and for sandpile models, relations to Burgers turbulence and the possibility that the relation $\tau=\tau_{\zeta}$ be violated to higher loop order. Finally, we show that the avalanche-size distribution on a hyperplane of codimension one is in mean field (valid close to and above d=4) given by $P(S) \sim K_{1/3}(S)/S$, where K is the Bessel-K function, thus $\tau_{hyper plane} = \frac{4}{3}$.

DOI: 10.1103/PhysRevE.79.051106

PACS number(s): 05.40.-a, 05.10.Cc

Predicting catastrophic events in power-law distributed avalanches

1 - Temporal autocorrelation

2 - Temporal correlation between avalanches & structure

Conclusions:

- Power law distributed avalanches do not imply necessarily that the correlation length diverge and the system is all the time in the verge of a catastrophic event.

- If the correlation length (averaged over the entire experience) does not diverge, prediction is in principle possible. Prediction of power law distributed events has been reached experimentally.

-The increase of the disorder of the structure and others signs of *critical slowing down* seems to be related with the occurrence of large events.

- (*trivial, but important*) In general, the analysis of functions which evolve continuously with time bring more useful information than the functions of "spikes". So, collecting and analyzing this kind of data can be relevant in order to achieve prediction.

Quasi-periodicity as an "ideal" state that is perturbed by instabilities

Open questions

Quasi-periodicity as an "ideal" state that is perturbed by instabilities

Earthquake simulations

O. Ramos et al, PRL (2006)

Basic state: No interaction between blocks or identical initial conditions to all: **Trivial periodic behavior**

Interactions (dissipation) + different friction thresholds (Gaussian)

Non trivial quasi-periodic behavior proportional to the degree of dissipation as a "natural" state. (coexisting with a power-law distribution of events)

Addition of disorder (Gaussian) to the values of the dissipation

The quasi-periodicity is broken (the power-law distribution of events remains). More realistic situation

Gutenberg – Richter law: Log [N (x)] ~ bM

where:

N (x): cumulative number of earthquakes. (earthquakes with a magnitude larger than M)

M ~ Log E : magnitude (damage)

b ~ -1

then

Log [N (E)] ~ - Log E

N (E) ~ E ⁻¹

P(x) : distribution of avalanches N(x) : cumulative number of avalanches

$$P(x) = N(x) - N(x + \Delta x)$$

$$\frac{P(x)}{\Delta x} = -\left[\frac{N(x + \Delta x) - N(x)}{\Delta x}\right]$$

 $P(x) \sim -(x^{-1})' = -(-x^{-2}) = x^{-2}$

back

$$P(x) \sim -N'(x)$$
$$N(x) \sim -\int P(x)dx$$

If N (x) = x^{-1}