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Scale invariance in Nature
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The magnitude distribution of declustered PNAS (2000)

earthquakes in Southern California

Leon Knopoff*
Department of Physics and Astronomy and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095

Contributed by Leon Knopoff, May 22, 2000

Because of its reputation of validity over a wide range of
magnitudes, the log-linear Gutenberg—Richter (G-R) fre-
quency-magnitude law of earthquake occurrence (1, 2)

logio N =a — bM [1]

| - NUNTIRT | . -2/13
has been a simple paradigm for modeling the evolution of N (E) S

earthquake patterns. Eq. 1 is expressed in the power law form
N~ E™"B [2]

through the intermediary of either a logarithmic energy-

magnitude relation derived originally by Gutenberg (3) or a

logarithmic moment-magnitude relation (4, 5); B = 3/2 for both

surface wave and local magnitudes in the magnitude range of this -2/3 -1 -1.66
paper (3). Because of the presumed universality of local esti- P(E) ~E =E
mates of the exponent b =~ 1, and because of the scale inde-

pendence implicit in Eq. 2, the model of self-organized criticality

(SOC) to understand earthquake occurrence (6-9) has been

proposed and discussed abundantly in recent years. The corre-
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Scale invariance in Nature

Temporal domain

Catastrophic events distributed
following a power-law

2

Log (PDF)

]
L
Log (size of the events) J

1 - Events reaching the size

of the system. Interpreted as a
divergence of the correlation
length.

2 - The events distribute
spatially forming fractals.

VS. Critic al phenomena

At the critical point of
a phase transition:

1 - The correlation length diverges.

2 - The system displays
a fractal structure.

However,

Critical phenomena need a
tuning!
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SELF-ORGANIZED CRITICALITY (SOC)

Cellular Automaton
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Does it really work ? (SOC in real systems ?)

Quasi-periodic very large avalanches (big piles of sand)

Lab.
experiments: Jaeger et al (1989), Held et al (1990), Rosendahl et al (1993)

sandpiles
Power-law distributed avalanches (very disordered piles)

Frette et al (1996), Altshuler et al (2001)
(b=-2) (b=-1.6)

Models: Earthquakes (b=-2), Solar flares (b=-1.8), Superconducting vortices (b=-1.6)
Evolution (b=-1.3), Stock markets (b=-1.8) ...

L abeling a system as SOC:

» Catastrophic events and more frequent small events are a result of the same
dynamics.

]
» Intrinsic unpredictability as a heritage of critical systems.

Motivation IPG Strasbourg, Nov. 10, 2009




Unpredictability of SOC avalanches

...the consensus of a recent meeting was that the Earth is in a state of self-organized
criticality where any small earthquake has some probability of cascading into a large event.

Geller et al, Science 275, 1616 (1997)

Thus, any precursor state of a large event is essentially identical to a precursor state of a
small event. The earthquake does not "know how large it will become®.

Per Bak. in debates about Earthquake prediction, Nature (1999)
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Qutline :

“Avalanche prediction in a self-organized pile of beads”
O. Ramos et al., Phys. Rev. Lett. (2009)

_NewScientist |
significance

“Criticality in earthquakes. Good or bad for prediction?”

O. Ramos, Tectonophysics. (accepted)

3- Conclusions and open questions

IPG Strasbourg, Nov. 10, 2009



Experimental setup

Grains:
4 mm-diameter steel
beads.

Spacing between
glasses:
4.5 mm.

Base: 60 cm long row of random spaced beads glued to the surface.
Camera: Canon D20: resolution: 20 pixels/bead diameter.

Statistics: 55000 dropping events.

IPG Strasbourg, Nov. 10, 2009 Experiment
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Defining avalance size

v

20830 o6 i
ae” @900

Number of beads that have moved between two consecu tive dropping events =
Number of beads that don’t have any neighbor at a distance < 1/7 diameter in
the consecutive image.

Avalanche size (28422) =984

Experiment IPG Strasbourg, Nov. 10, 2009
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Analysis of the avalanche time series

s(t)=1 if size(avalanche)=L

C.r) = Ss(r)s(r + 0] — {s(7))? s(t)=0 if size(avalanche)=S, M
! S[s(r) — ()P
1,0 ;
a ] 0 100 200 ., mbf 0 10 20 30 40
2 o5 8107 U lated L event
£ 0.3 002 |2 ] - Uncorrelated L events.
= 0,2 5 ]
] D-1 *'WMM 0,00 E’IIT?
[],0- - E - Exponential decay of the
| 10°; waiting times between L

0 1500 3000 4500 O 60 120 180 240 events.
c  Tme (dropping events) Waiting time (dropping events)

o

- Signs of foreshocks and
aftershocks, but too weak
in order to work as
precursors of L events

Average avalanche size (number of beads)

Time (dropping events)
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Internal structure

Size = number of beads

Area of the pile

Profile perimeter

PDC-= profile disorder
coefficient

P!

i
®:

! 4
PRt

Shape factor ¢

C2
{=——
4T E

\Voronoi
cells

Circle ¢=1
Regular hexagon ¢ =1.103
square ¢ =1.273
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> (s(0) X(@ +1)) ~(S(2)) {X(7))

correlation between structure & L avalanches C(t) = =
VX (50) = (s)) 3 (xr) ~ (X))

L & size
Global
Analysis
-200 -100
200 0 100 200
Time (dropping events)
I Contidions ))> Alarm ON Success
Alarms: (L) 51+3% 62 + 4%
R 718 12356 64 + 7%

considering aftershocks: (L) 50.0 £ 0.1% 65 + 4%

: short-term prediction !
IPG Strasbourg, Nov. 10, 2009 p



correlation between structure & avalanches

Local
Analysis

m AZ>0.002
m AL<-0.002
m |A&|<0.002

disorder

M\ e .

i
‘\‘\ll“\‘* \“\ \\\ L

i

i sal
l\\ u 1;\ ! ' avalanches
h ’s.t.'l! ik

Maximun height = 1083 number of events
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Simulations in an earthquake model

Burridge - Knopoff O.F.C.

Cellular Automaton

A 4

Phys. Rev. Lett. (1992)

-The Force is applied to every site at the same time

-When a site reaches the threshold Its force goes to zero and a
fraction 4* a of it is redistributed equally between its nearest

neighbors.
OFC Ours
Source of Block thresholds have a single Thresholds distributed randomly
randomness value. At t=0 random forces following a Gaussian distribution with
are imposed. an standard deviation o .Whena
block slips a new threshold is
imposed.
Excitation Force added "ad hoc” to excite A quantum of force is added in each
the site closest to the step (speed = constant).
threshold (speed —0).
Infinitely accurate tuning.

O. Ramos et al., Phys. Rev.Lett. (2006)

Simulations IPG Strasbourg, Nov. 10, 2009



Quasi-periodicity in the avalanches
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However, real earthquakes are not qusi-periodic!

By adding disorder.

1,00;: | a 1,00;: | b
O =0 O =0.005
a o

__0,02- 0,021
o
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time (steps)
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o =0.001

Simulations

1000 2000
time (steps)

oa = 0.005 (dissipation)

(friction thresholds)
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Classical critical phenomena

1- Divergence of the correlation length ( €):

stan),

Cas(d) ~ exp(d/$) (v T=Te)

Some basics

D) (Y )-< f(x,y)>"

D (e y)-< f(xy)>)

IPG Strasbourg, Nov. 10, 2009
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Classical critical phenomena

1- Divergence of the correlation length ( §):

S (o f &Y )-< f(x,) >2> Cas(d) ~ exp(d/d)

C,s(d =
(Castd.0), < S (F (6 y)-<f(x0)>) (¥ T Tc)

2- Divergence of the correlation time ( 7): Critical slowing down

¢ 1) LW +D)y < 1(2) > @ n
) = ais
! D f)=< f()>) c=\
- —ZV
Cat(t) ~ exp(t/7) r=|r
t=(T-Tc)/Tc
3- As the size of the system increases, the transition .
between the two states becomes sharper, and it is g 5
infinitely sharp in an infinite system.
e _/

Some basics IPG Strasbourg, Nov. 10, 2009



Spatial autocorrelation function
& correlation length

oX ’y
(O, Y=< f(x,p)>° d
(Cus(d.0), = 2 2
SU-<f@n> |/
X,Y
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3 0,37]
0,14
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S O 0,024
8< 0,01 Xy
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0,0-
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0,2
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Temporal corr (spatial autocorrelation function & L arge avalanches)

La(t)=1 Iif size(avalanche)=L
D (La(t,)Cx(t; + )~ < La(t;) >< Cx(1,) > La(t)=0 if size(avalanche)=S, M

Ct(r) = =
S at)-<Lat) > (Cx@)-< Cxry > OO C4D), C8(Y
0.03 ' ' Structure still shows
~1b gj’ S’;ﬁ Quasi-periodicity.
0029 c4,L=128 F ’
1 c8, L=128

~ 0,01-

E-)—r_ . \ \ Large oscillations of
0’00'_ | Cx(t) around L events.
-0,01-

-0,02: —_— .
003 Criticality ?
2000 -1000 0 1000 2000

time (steps)
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Spatial autocorrelation function
& correlation length ¢

| C 0,14 %s
1,0 ~
’ 0,05
T3
T O<
- 0,02 .
. 0.08 Lﬂ max. ¢ =36 sites
) e
175 .@Oo 0,01
) Vg %00, 5 10 15 20 25 .
0,00+ vg%j 000, average ¢ =12 gtes
o V@Z‘DDDD
D:DDDDEEDEDDDEDEEDEDDEEDEDDDEDED:‘
-0,08- AR RARARTIARITTRA min. £ =7 sites
0 10 20 30 40 50

d(number of sites)

- In average the system is not critical (the correlation length is small).

U

In principle, prediction is possible

Simulations IPG Strasbourg, Nov. 10, 2009



Temporal correlation between structure & avalanches
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Vol 461|3 September 2009|doi:10.1038 /nature08227

Can be criticality” good for prediction?

nature

REVIEWS

Early-warning signals for critical transitions

Marten Scheffer!, Jordi Bascomptez, William A. Brock®, Victor Brovkin®, Stephen R. Carpenter‘*, Vasilis Dakos',
Hermann Held®, Egbert H. van Nes', Max Rietkerk” & George Sugihara®

Onget of epileptic seizure

E ]
g 1081 f
= l."-'-\k-.--"-. .ll
M'V'---M_fz\\—f\“'xr—" b
q DE 1 1 1 1 1
800 00 400 200 0 200
Time is)

Figure 5 | Subtle changes in brain activity before an epileptic seizure may
be used as an early warning signal. The epileptic seizure clinically detected
at time 0 is announced minutes eadier in an electroencephalography (EEG)
time series by an increase in variance. Adapted by permission from
Macmillan Publishers Ltd: Nature Medicine (ref. 3), copyright 2003,
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Critical slowing down

Discussions



Can be criticality” good for prediction?

PRL 102, 014101 (2009)

PHYSICAL REVIEW LETTERS

week ending
9 JANUARY 2009

Turbulencelike Behavior of Seismic Time Series

j lg g <1 o 2 . 3, . ! 4 1w . I 13,5
P. Manshour," S. Saberi,” Muhammad Sahimi,” J. Peinke,” Amalio F. Pacheco,” and M. Reza Rahimi Tabar' >
'Department of Physics, Sharif University of Technology, Tehran 11155-9161, lran
“Mork Family Department of Chemical Engineering & Materials Science, University of Southern California,

Los Angeles, California 90089-1211, USA

*Institute of Physics, Carl von Ossietzky University, D-26111 Oldenburg, Germany
4De;_:m_‘:mem of Theoretical Physics, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
"CNRS UMR 6202, Observatoire de la Cote d’Azur, BP 4229, 06304 Nice Cedex 4, France

(Received 22 February 2008; published 5 January 2009)
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Can be criticality” good for prediction?

b L, & Sd(Force)
0,021 Simulations
S
0,01
Critical slowing down ?
0,00-
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0,04+ © m
d : L& Experiments
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Disorder accumulation
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Classifying catastrophic events in power-law distributed avalan ches

10°4 % %
] 90 %
107 2
1133.3%
107+ “Many very small events |

33 39 and a few very large ones”.

Energy balance:

vt E-j.rna.;;y > > (E-z'.-n,g;)-u.t > (Ed-f. .5'.5'-2'.-3_)> — (Ebulk > + (Ebo-u.nda:r-zf es >
G':'Sm, azx a << s>

- Large b values are forbidden in dissipative slowly -driven systems !

- For small b values the system is not critical

IPG Strasbourg, Nov. 10, 2009 In general



PHYSICAL REVIEW E 79, 051106 (2009)

Size distributions of shocks and static avalanches from the functional renormalization group

Pierre Le Doussal and Kay Jorg Wiese
Laboratoire de Physique Théorique de I’Ecole Normale Supérieure, CNRS, 24 rue Lhomond, 75231 Paris Cedex, France
(Received 20 January 2009; published 7 May 2009)

Interfaces pinned by quenched disorder are often used to model jerky self-organized critical motion. We
study static avalanches, or shocks, defined here as jumps between distinct global minima upon changing an
external field. We show how the full statistics of these jumps is encoded in the functional-renormalization-
group fixed-point functions. This allows us to obtain the size distribution P(S) of static avalanches in an

semmismblbamingi crnal dimension d of the interface. Near and above d=4 this yields the mean-field distri-
~5/45m, where S,, is a large-scale cutoff, in some cases calculable. Resumming all one-loop
serewesind P(S)~S77 exp{C(S,-’Sm)]"Q—f(S,-’Sm)‘S}. where B, C, 4, and 7 are obtained to first order
in e=4—d. Our result is consistent to O(e) with the relation 7= 'rg==2—fi. where { is the static roughness
exponent, often conjectured to hold at depinning. Our calculation applies to all static universality classes,
including random-bond, random-field, and random-periodic disorders. Extended to long-range elastic systems,

it yields a different size distribution for the case of contact-line elasticity, with an exponent compatible with
7=2—ﬁ£ to O(e=2-d). We discuss consequences for avalanches at depinning and for sandpile models,
relations to Burgers turbulence and the possibility that the relation 7=7; be violated to higher loop order.
Finally, we show that the avalanche-size distribution on a hyperplane of codimension one is in mean field

(valid close to and above d=4) given by P(S)~ K 3(S5)/S, where K is the Bessel-K function, thus
i

Thyper plane™=

DOI: 10.1103/PhysRevE.79.051106 PACS number(s): 05.40.—a, 05.10.Cc

IPG Strasbourg, Nov. 10, 2009



Predicting catastrophic events in power-law distributed avalan ches

1 - Temporal autocorrelation

Avalanche size
Avalanche size

time time
o o
: -% @
2 - Temporal correlation 2 & =
c O won
between S S
Z n

avalanches & structure

time
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Conclusions:

- Power law distributed avalanches do not imply necessarily that the
correlation length diverge and the system is all the time in the verge of
a catastrophic event.

- If the correlation length (averaged over the entire experience) does
not diverge, prediction is in principle possible. Prediction of power law
distributed events has been reached experimentally.

-The increase of the disorder of the structure and others signs of critical
slowing down seems to be related with the occurrence of large events.

- (trivial, but important) In general, the analysis of functions which evolve

continuously with time bring more useful information than the functions of
“spikes”. So, collecting and analyzing this kind of data can be relevant in

order to achieve prediction.

IPG Strasbourg, Nov. 10, 2009



Open questions:

Slow accumulation
of energy

4

distribution?

DISORDER

scale-invariant?

dissipation Distribution of

thresholds

N

4

Open questions

!

Power-law distributed
avalanches
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Quasi-periodicity as an “ideal” state that is perturbed by instabilities

little inertia . -
Energy Gap e :> Quasi-periodic large events
large friction Held et al (1990),

supercritical Rosendahl et al (1993)

subcritical

U

add disorder :> Power-law dist. events

Frette et al (1994),
Altshuler et al (2001)

dissipation,

noise vs. stability —> exponent b

Ramos et al (to be pub.)

S,

Open questions IPG Strasbourg, Nov. 10, 2009



Quasi-periodicity as an “ideal” state that is perturbed by instabilities

Earthquake simulations
Basic state: No interaction between blocks or identical
initial conditions to all: Trivial periodic behavior

Interactions (dissipation) +
ﬂ different friction thresholds (caussian)

Non trivial quasi-periodic behavior  proportional to
the degree of dissipation as a “natural” state.
(coexisting with a power-law distribution of events)

O. Ramos et al, PRL (2006)

Addition of disorder (Gaussian) to the
ﬂ values of the dissipation

The quasi-periodicity is broken  (the power-law
distribution of events remains). More realistic situation

Open questions IPG Strasbourg, Nov. 10, 2009



Open questions:

Slow accumulation
of energy

4

distribution?

DISORDER

scale-invariant?

dissipation Distribution of

thresholds

N

4

Open questions

!

Power-law distributed
avalanches
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Merci beaucoup!
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Gutenberg — Richter law: Log [ N (X) ] ~ bM

where:

P(x) : distribution of avalanches

N (x): cumulative number of N(x) : cumulative number of avalanches

earthquakes. ( earthquakes with a
magnitude larger than M) P(X) = N(X) = N(x + AX)

M ~ Log E : magnitude (damage)

P(x) __[N(x+Ax)—N(x)}
b~-1 AX AX

P(X) ~=N'(x)
N(X) ~ — j P(x)dx

then

Log[N(E)]~-Log E

If N(x)=x"1

N (E) ~ E -1




