Electroseismics for CO₂ storage and hydrocarbon reservoirs

Fabio I. Zyserman

< E > < E >

F. I. Zyserman

Electroseismics: field experiments

- Electroseismic response in gas and oil reservoirs from about 1500 m depth.
- Signal between two and six orders of magnitude less than ambient noise.
- It is necessary to optimize the source power (~ megawatt), the injected signal (few thousands A), and the detection equipment (digital accelerometers).

F. I. Zyserman

Electroseismic Modeling I

When an applied electric field acts on an electrolyte saturated porous material, besides driving σE , it acts as a body force on the excess charge, giving rise to a net fluid filtration; this is called *electro-osmosis* \Rightarrow electroseismic phenomena. Reciprocally, an applied pressure gradient generates an electric current; this is called *electro-filtration* \Rightarrow seismoelectric phenomena.

A D b 4 A b 4

Electroseismic modeling II

Assuming an $e^{+i\omega t}$ time dependence, Pride (1994) proposed

$$\begin{split} (\sigma + i\epsilon\omega)E &- \nabla \times H + L(\omega)\eta\kappa^{-1} \left[i\omega u^{f} - L(\omega)E\right] = -J_{e}^{ext}, \\ \nabla \times E + i\omega\mu H &= -J_{m}^{ext}, \\ -\omega^{2}\rho_{b}u^{s} - \omega^{2}\rho_{f}u^{f} - \nabla \cdot \tau(u) = F^{(s)}, \\ -\omega^{2}\rho_{f}u^{s} + \eta\kappa^{-1} \left[i\omega u^{f} - L(\omega)E\right] + \nabla p_{f} = F^{(f)}, \\ \tau_{Im}(u) &= 2G \varepsilon_{Im}(u^{s}) + \delta_{Im} \left(\lambda_{c} \nabla \cdot u^{s} + \alpha K_{av} \nabla \cdot u^{f}\right), \\ p_{f}(u) &= -\alpha K_{av} \nabla \cdot u^{s} - K_{av} \nabla \cdot u^{f}. \end{split}$$

 ϕ porosity, ρ_s , ρ_f solid and fluid densities, $\rho_b = (1 - \phi)\rho_s + \phi\rho_f$, η fluid viscosity, $\kappa(\omega)$ dinamic permeability In the constitutive equations $\lambda_c = K_c - 2/3G$ and $K_c = K_m + \alpha^2 K_{av}$,

$$\alpha = 1 - \frac{K_m}{K_s}, \qquad K_{av} = \left[\frac{\alpha - \phi}{K_s} + \frac{\phi}{K_f}\right]^{-1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

 K_s , K_m and K_f : bulk moduli of the solid grains, the dry matrix and the fluid.

F. I. Zyserman

Electroseismic modeling III

2D Sources and Modes

- ► Infinite solenoid: J_{m}^{ext} generates electromagnetic fields $(E_x(x,z), E_z(x,z))$, and $H_y(x,z)$, coupled with solid displacements $(u_x^s(x,z), u_z^s(x,z))$ and fluid displacements $(u_x^f(x,z), u_z^f(x,z))$. This is the so-called PSVTM-mode, in which compressional and vertically polarized shear seismic waves (PSV-waves) are present.
- ► Infinite current line: J_e^{ext} generates electromagnetic fields $(H_x(x, z), H_z(x, z))$ and $E_y(x, z)$, coupled with solid displacements $u_y^s(x, z)$ and fluid displacements $u_y^f(x, z)$. This is known as the SHTE-mode, where only horizontally polarized seismic waves (SH-waves) are present.

Electroseismic modeling IV

Some assumptions

- ▶ We work in the seismic frequency range, then $\operatorname{Re}(\eta/\kappa(\omega)) \rightarrow \eta/\kappa_0$ and $\frac{1}{\omega}\operatorname{Im}(\eta/\kappa(\omega)) \rightarrow g_0 = 1.5\frac{\rho_t T}{\phi}$, *T* being the tortuosity factor so that the low-frequency Biot's equations are recovered.
- The electroseismic coupling coefficient L is assumed to be frequency independent,

$$L_0 = -rac{\phi}{T} rac{arepsilon_0 \kappa_f \zeta}{\eta} (1 - 2rac{\widetilde{d}}{\Lambda}),$$

• $F^{(s)} = F^{(f)} = 0$, and $\omega \varepsilon / \sigma \ll 1$

- We consider lossy media using Liu's model.
- Electro-filtration feedback negligible; this decouples the EM fields from the poroviscoelastic response. (This makes calculations easier)

F. I. Zyserman

Scheme of the Finite Element Procedure

- Create a partition of the domain (elements).
- Transform original equations into a "weak form".
- Choose appropriate polynomial functions to approximate the solution in each element, (dofs).
- ▶ Transform the weak form into a linear sistem, and solve it. ($\sim 4 7 \times 10^7$ unknowns)

lingle horizontal layer			Medium 1	Medium 2 (layer)
		$\sigma~({\rm S/m})$	0.1	0.01
		ϕ (—)	0.2	0.33
		K_s (Pa)	$4.5 \ 10^{10}$	$6 \ 10^{10}$
		$v_p (m/s)$	3900	4800
	Ī	$v_s (m/s)$	2130	2800
	700 m	$\rho_s~(\rm kg/m^3)$	2600	2600
		$k_0 \ (m^2)$	10^{-16}	10^{-11}
	Ŧ	L_0	10^{-14}	$8.16 \ 10^{-9}$
	400 m	Q~()	90	90
	4	$\rho_f~(\rm kg/m^3)$	1000	1000
	100 -	$\eta~(\rm kg/(m~s))$	0.001	0.001
	400 m	K_f (Pa)	$2.25 \ 10^{9}$	$2.25 \ 10^9$
	*	S_f (—)	1	1

1.1.1 1.1 . Si х.

・ロト・「日・・日・・日・ うらぐ

F. I. Zyserman

Single horizontal layer

æ

æ

F. I. Zyserman

Single horizontal layer

Different layer widths, SHTE-mode

F. I. Zyserman

Single horizontal layer PSTVM-mode

★ 문 → ★ 문 →

æ

F. I. Zyserman

Single horizontal layer

PSTVM-mode

F. I. Zyserman

Wedge

F. I. Zyserman

Surface gather

x-component acceleration

・ロト・日本・日本・日本・日本

F. I. Zyserman

Surface gather

z-component acceleration

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

F. I. Zyserman

Methane hydrates (GH) ...

 ...form stable ice-like crystals in permafrost regions and beneath the ocean floor along continental margins.

- ...are considered as a potentially huge energy resource.
- ...have the highest energy density of any naturally occurring form of methane (about 160 times that of methane gas)

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

...decrease the electrical conductivity of the medium.

F. I. Zyserman EOST, March 12th, 2013

Composite Media

We use an extended Biot theory for composite matrix rocks with non uniform porosity distributions.

- The solid matrix can be formed by mixtures of different mineral grains.
- A fraction of the GH (ice) is assumed to form a second matrix occupying the pore space , and the rest of it is assumed to cement the mineral grains.
- ▶ Letting $V = (V_{gh}^c + V_{gh}^{nc}) + V_{mg} + V_f$, $V_p = V V_{mg}$, $\phi_a = V_p/V$; and $C_{gh} = V_{gh}^c/V_{gh}$, cementation coefficient, $S_{gh} = V_{gh}/V_p$ GH saturation, all (Biot) model parameters are obtained in terms of C_{gh} , S_{gh} , ϕ_a , K_{mg}^j and μ_{mg}^j forming the solid matrix; and K_{gh} , μ_{gh} .

F. I. Zyserman

The Model

	Permafrost	Sandstone	Slab $(S_{gh} = 0.1)$	Slab $(S_{gh} = 0.8)$
ϕ	0.025	0.25	0.225	0.05
$V_p \text{ m/s}$	4100	2250	2930	4080
$V_s \text{ m/s}$	2150	690	1580	2180
σ S/m	$8 \cdot 10^{-3}$	0.025	$8 \cdot 10^{-3}$	10^{-3}
$L_0 \ A/(Pa \ m)$	10^{-16}	$4.6 \cdot 10^{-9}$	$4.15 \cdot 10^{-9}$	$9.4 \cdot 10^{-10}$

SHTE-mode

Acceleration surface gather

F. I. Zyserman

SHTE-mode

Acceleration well gather

F. I. Zyserman

SHTE-mode

Acceleration surface trace for $S_{gh} = .1$ and $S_{gh} = .8$

▲ロ▶▲圖▶▲臣▶▲臣▶ 臣 のへで

F. I. Zyserman

PSVTM-mode

Acceleration (x-component) well gather

F. I. Zyserman

PSVTM-mode

Acceleration well traces for for $S_{gh} = .1$ and $S_{gh} = .8$

▲□▶▲圖▶▲≧▶▲≧▶ = の�?

F. I. Zyserman

CO₂ storage monitoring

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

F. I. Zyserman EOST, March 12th, 2013

CO₂ storage monitoring

PSVTM mode, acceleration traces

▲口▶▲御▶▲臣▶▲臣▶ 臣 のQ@

F. I. Zyserman

CO₂ storage monitoring

PSVTM mode, acceleration traces

F. I. Zyserman

Summary

- We have developed a numerical tool to simulate electroseismic (and seismoelectric) phenomena.
- It was observed that the response is sensitive to changes in fluid conductivities (mixtures of gas an brine).
- We have shown that methane hydrates can be detected by means of electroseismics on land in permafrost regions.
- We have observed that the seismic response is sensitive to methane hydrate concentration
- Preliminar results indicate that it could be very interesting to consider electroseismics/ seismoelectrics as a monitoring tools for CO₂ storage sites.

Heaps of work ahead!