Vers le suivi spatio-temporel du transport sédimentaire, des pentes aux rivières, par l'analyse du bruit sismique haute-fréquence

Arnaud BURTIN

University of Cambridge

15 Février 2011

River Seismic Noise

Hillslope Processes

Dedicated Experiments

・ロッジ 得 > / () 三 > ・ () ヨ >

Landscape Evolution

- Erosion Processes
- Monitoring Sediment Transport

River Seismic Noise

- Monitoring Bed Load Transport
- Location of Sediment Transport

3 Hillslope Processes

- Debris Flow Monitoring
- Dedicated ExperimentsTaiwan

River Seismic Noise

Hillslope Processes

Dedicated Experiments

イロトズ 得 トイモト イヨト

Landscape Evolution

- Erosion Processes
- Monitoring Sediment Transport

2 River Seismic Noise

- Monitoring Bed Load Transport
- Location of Sediment Transport
- Hillslope Processes
 Debris Flow Monitoring
- Dedicated ExperimentsTaiwan

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Shaping the Earth's surface

The landscape is driven by:

- Tectonics
- Climate
- Erosion

• □ >

Landscape Evolution

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Shaping the Earth's surface

The landscape is driven by:

- Tectonics
- Climate
- Erosion

• □ >

Landscape Evolution

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Shaping the Earth's surface

The landscape is driven by:

- Tectonics
- Climate
- Erosion

• □ > /4 @ > /4 @ > /4 @ > /

Rivers play an important role in mass transport and erosion

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Sediment transport & fluvial incision

- Dissolved elements, linked to chemical erosion
- Suspended load, no connection with the river bed
- Bed load, sediments mobilized in the vicinity of the river bed

э

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Sediment transport & fluvial incision

- Dissolved elements, linked to chemical erosion
- Suspended load, no connection with the river bed
- Bed load, sediments mobilized in the vicinity of the river bed

Bed load transport through abrasion drives river incision

River Seismic Noise

Hillslope Processes

Dedicated Experiments 0000

イロトズ 得 トイモト イヨト

Landscape Evolution

- Erosion Processes
- Monitoring Sediment Transport

2 River Seismic Noise

- Monitoring Bed Load Transport
- Location of Sediment Transport
- Hillslope Processes
 Debris Flow Monitoring
- Dedicated ExperimentsTaiwan

River Seismic Noise

Hillslope Processes

Dedicated Experiments

In-situ techniques

Sediment traps

River Seismic Noise

Hillslope Processes

Dedicated Experiments

In-situ techniques

Sediment traps

- Ponctual measurements, integrated over a time period
- Invasive constructions disturbing the hydrology of a river
- Specific requirements to install such monitoring devices
- Not designed for all rivers

River Seismic Noise

Hillslope Processes

Dedicated Experiments

(ロ)/(理)/(注)・(注)

э

In-situ techniques

Helley-Smith sampler

River Seismic Noise

Hillslope Processes

Dedicated Experiments

< □ > < 一 > < 一 > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - >

In-situ techniques

Helley-Smith sampler

- Ponctual measurements, integrated over a time period
- The only method that provides a direct measurement of sediment transport
- Bed load estimates dependent of the river hydrology

River Seismic Noise

Hillslope Processes

Dedicated Experiments

In-situ techniques

Helley-Smith sampler

River Seismic Noise

Hillslope Processes

Dedicated Experiments

In-situ techniques

Acoustic sensors: hydrophones

◆□▶/◆□▶/◆三▶ ◆三▶ 三三 のへで

River Seismic Noise

Hillslope Processes

Dedicated Experiments

In-situ techniques

Acoustic sensors: hydrophones

- Continuous monitoring, spatial extent allowed
- Bed load estimates dependent of the river hydrology
- Calibration is required to translate signal into sediment load

River Seismic Noise

Hillslope Processes

Dedicated Experiments

A way of exploration...

Background seismic noise

 Many sources of seismic noise have a natural origin (ocean, wind, rivers...).

• □ >

River Seismic Noise

Hillslope Processes

Dedicated Experiments

A way of exploration... Background seismic noise

Seismic sensors installed along rivers to continuously study sediment transport and their spatial variations

- Spectral analysis of the continuous seismic signal recorded by stations: Characterize and Quantify ?
- Explore the ability of locating sediment transport and extreme events: Erosion Processes
- Study the feasibility in various hydrologic contexts:
 - Himalaya, French Alps

River Seismic Noise

Hillslope Processes

Dedicated Experiments

A way of exploration... Background seismic noise

Seismic sensors installed along rivers to continuously study sediment transport and their spatial variations

- Spectral analysis of the continuous seismic signal recorded by stations:
 Characterize and Quantify ?
- Explore the ability of locating sediment transport and extreme events: Erosion Processes
- Study the feasibility in various hydrologic contexts:
 Himalaya, French Alps

River Seismic Noise

Hillslope Processes

Dedicated Experiments

▲□▶※ @▶ ▲ ● ▶ ▲ ● ▶ ● ● ● ●

A way of exploration... Background seismic noise

Seismic sensors installed along rivers to continuously study sediment transport and their spatial variations

- Spectral analysis of the continuous seismic signal recorded by stations:
 Characterize and Quantify ?
- Explore the ability of locating sediment transport and extreme events: Erosion Processes
- Study the feasibility in various hydrologic contexts: Himalaya, French Alps

River Seismic Noise

Hillslope Processes

Dedicated Experiments

How to sample?

▲□▶/▲□▶/▲三▶ ▲三▶ 三 の々ぐ

River Seismic Noise

Hillslope Processes

Dedicated Experiments

◆□▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲

æ

How to estimate?

River Seismic Noise

Hillslope Processes

Dedicated Experiments

イロトズ 得 トイモト イヨト

Landscape Evolution

- Erosion Processes
- Monitoring Sediment Transport

2 River Seismic Noise

- Monitoring Bed Load Transport
- Location of Sediment Transport
- Hillslope Processes
 Debris Flow Monitoring
- Dedicated ExperimentsTaiwan

River Seismic Noise

Hillslope Processes

Dedicated Experiments

The Hi-CLIMB experiment

Nábělek et al. (2009)

- Temporary seismological network from 2002 to 2005
- Almost 250 sites from Nepal to the Tibetan Plateau, dedicated to imaging the lithospheric structures of the India–Asia collision zone
- Broadband stations installed over 2 phases (Phase 1 located in the Himalayas)

・ロッジ 得 とくが 手 ・ 手

River Seismic Noise

Hillslope Processes

Dedicated Experiments

The Hi-CLIMB experiment

Nábělek et al. (2009)

- Temporary seismological network from 2002 to 2005
- Almost 250 sites from Nepal to the Tibetan Plateau, dedicated to imaging the lithospheric structures of the India–Asia collision zone
- Broadband stations installed over 2 phases (Phase 1 located in the Himalayas)

イロトズ 得 トイビデト イヨト

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Phase 1 of the Hi-CLIMB array

- Many stations are along a trans-Himalayan river: the Trisuli
- Inter-stations distances of 3-5 km (spatial variations)
- Year 2003 in full acquisition for most stations (temporal variations)

The Hi-CLIMB network: a seismic observatory of the Trisuli River

• □ > /4 / P > • (E > + E > -

3

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Phase 1 of the Hi-CLIMB array

- Many stations are along a trans-Himalayan river: the Trisuli
- Inter-stations distances of 3-5 km (spatial variations)
- Year 2003 in full acquisition for most stations (temporal variations)

The Hi-CLIMB network: a seismic observatory of the Trisuli River

(日)/(個)/(())/()/()/()

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Phase 1 of the Hi-CLIMB array

- Many stations are along a trans-Himalayan river: the Trisuli
- Inter-stations distances of 3-5 km (spatial variations)
- Year 2003 in full acquisition for most stations (temporal variations)
- The Hi-CLIMB network: a seismic observatory of the Trisuli River

• □ >

3

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Seismic signal and spectral analysis

- Increase of seismic energy in a high-frequency band (> 1 Hz) during the monsoon season
- Spectral characteristics observed for most stations located along the Trisuli River

River Seismic Noise

Hillslope Processes

Dedicated Experiments

・ロッジ 得 > / () 三 > ・ () ヨ >

Origin of high-frequency seismic noise Burtin *et al.* (2008)

Seismic noise analysis to monitor river sediment transport

River Seismic Noise

Hillslope Processes

Dedicated Experiments

< ロ) 河 同) / () 三) (三) (

ъ

Origin of high-frequency seismic noise Burtin *et al.* (2008)

Seismic noise analysis to monitor river sediment transport

How to locate the sediment transport?

River Seismic Noise

Hillslope Processes

Dedicated Experiments

イロトズ 得 トイモト イヨト

1 Landscape Evolution

- Erosion Processes
- Monitoring Sediment Transport

2 River Seismic Noise

- Monitoring Bed Load Transport
- Location of Sediment Transport

Hillslope Processes Debris Flow Monitoring

Dedicated Experiments
 Taiwan

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Coherence in the seismic noise

- Vertical seismograms
- 1-d-long recordings
- 1-20 Hz frequency band (river seismic noise)

イロトズ 得 トイビデト イヨト

1-bit normalisation

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Coherence in the seismic noise

- Vertical seismograms
- 1-d-long recordings
- 1-20 Hz frequency band (river seismic noise)

イロトズ 得 トイビデト イヨト

1-bit normalisation

River Seismic Noise

Hillslope Processes

Dedicated Experiments

• □ > /4 / P > • (E > + E > -

3

Time stability of the coherence

 High-frequency seismic noise is coherent during long time periods

- Envelopes of noise correlation function (Gaussian filter: $\sigma_f = 0.25 \text{ Hz}$)
- Selection process to only keep coherence coming from river sources

River Seismic Noise

Hillslope Processes

Dedicated Experiments

• □ >

э

Location of river seismic noise

Migration of the coherence envelopes

- Proceed to the migration at various frequencies and apparent velocities
- Search for the best coherence to retrieve the source location and apparent velocity

River Seismic Noise

Hillslope Processes

Dedicated Experiments

・ロッジ 得 > / () 三 > ・ () ヨ >

э

Results: Coherence maps

- Regions of large coherence merge along the Trisuli River
- Two main spots are observed near H0410 and H0480
- Best apparent velocity is constant and equal to 3 km/s

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Simulations of seismic noise

Source distribution tests (3.5 Hz)

500

River Seismic Noise 00000000

イロトズ 得 トイビデト イヨト

Simulations of seismic noise

Source distribution tests (3.5 Hz)

Source Distribution for Simulations

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Location results

Array artefact

- Artefact from the geometry of the Hi-CLIMB array
- Correct the coherence maps from these perturbations

イロトズ 得 トイビデト イヨト

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Coherence along the Trisuli – River incision rates

▲ロ ▶ ※ 個 ▶ 《 画 ▶ ▲ 画 ▶ 《 画 ▶ 》 風 ♥ (● ●

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Coherence along the Trisuli – River incision rates

▲ロ▶河間▶/火河▶ ▲ヨ▶ ヨーのへで

River Seismic Noise

Hillslope Processes

Dedicated Experiments

イロトズ 得 トイモト イヨト

Landscape Evolution

- Erosion Processes
- Monitoring Sediment Transport

2 River Seismic Noise

- Monitoring Bed Load Transport
- Location of Sediment Transport

Hillslope Processes Debris Flow Monitoring

Dedicated ExperimentsTaiwan

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Transient events at the front of the Himalayas

Bursts of high-frequency seismic energy

- Broad high-frequency band excited during the events (> 2 Hz)
- Observed at the front of the High-Range (H0370–H0410)
- Last several hours to days
- Many occurrences during the monsoon season

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Transient events at the front of the Himalayas

Bursts of high-frequency seismic energy

- Broad high-frequency band excited during the events (> 2 Hz)
- Observed at the front of the High-Range (H0370–H0410)
- Last several hours to days
- Many occurrences during the monsoon season

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Transient events at the front of the Himalayas

Bursts of high-frequency seismic energy

- Broad high-frequency band excited during the events (> 2 Hz)
- Observed at the front of the High-Range (H0370–H0410)
- Last several hours to days
- Many occurrences during the monsoon season

・ロッジ 得 > / () 三 > ・ () ヨ >

Link between transient events and debris flows ?

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Ramche Debris Flow

Seismic signal

- The Ramche Debris Flow (RDF) is observed at many Hi-CLIMB stations
- Seismograms show great complexities
- Three main events are noticed (P1, P2 and P3)
- The events last ~ 2-min and are separated from each others by ~ 30-min

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Ramche Debris Flow

Seismic signal

- The Ramche Debris Flow (RDF) is observed at many Hi-CLIMB stations
- Seismograms show great complexities
- Three main events are noticed (P1, P2 and P3)
- The events last ~ 2-min and are separated from each others by ~ 30-min

Proceed to the location of these events

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Location process

Correlation of seismic envelopes and probability density method

◆□▶/4 □ ▶/4 三 ▶ ◆ 三 ● ● 9 へ ()

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Location process

Correlation of seismic envelopes and probability density method

◆□▶/4 □ ▶/4 三 ▶ ◆ 三 ● ● 9 へ ()

River Seismic Noise

Hillslope Processes

Dedicated Experiments

トネ 得 トイビデト イヨ

Location process

Correlation of seismic envelopes and probability density method

Potential for the detection and location of such mass movements

River Seismic Noise

Hillslope Processes

Dedicated Experiments

・ロッジ 得 > / () 三 > ・ () ヨ >

э

Transient event characteristics

- Peaks of noise level are delayed with 2-hr (H0390–H0410 7km)
- Similar mechanisms for the generation of high-frequency seismic energy
- Different locations for the source origin

River Seismic Noise

Hillslope Processes

Dedicated Experiments

・ロッジ 得 > / () 三 > ・ () ヨ >

э

Transient event characteristics

- Peaks of noise level are delayed with 2-hr (H0390–H0410 7km)
- Similar mechanisms for the generation of high-frequency seismic energy
- Different locations for the source origin

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Spatial distribution of transients

- Hi-CLIMB stations located at the front of the High-Range are close to major landslide scars and large gully structures
- Do transients denote debris removal and/or sediment transport in gullies ?

River Seismic Noise

Hillslope Processes

Dedicated Experiments

(日)/(同)/((三))(三)

Temporal variations

Transient event occurrences - River sediment load - Landslide monitoring

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Temporal variations

Transient event occurrences - River sediment load - Landslide monitoring

▲ロ▶/4 □ ▶/4/三 ▶ ▲ 三 ▶ → 三 → のへで

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Temporal variations

Transient event occurrences - River sediment load - Landslide monitoring

▲□▶河間▶/火河▶ ▲ヨ▶ ヨーのへで

River Seismic Noise

Hillslope Processes

Dedicated Experiments

What is a transient event?

- The burst of high-frequency seismic energy reveals an intense sediment transport in gullies or landslide scars
- The induced erosion may alter the stability of slopes (stream incision, bank erosion...) and may trigger a mass movement (*cf.* the Ramche Debris Flow)
- The debris removal will thus contribute to the generation of high-frequency seismic energy
- These episodes of seismic noise are clearly consistent with peaks of sediment load presumably associated to landslides
- Towards a seismic measurement of eroded volumes, sediment input and denudation rates ?

River Seismic Noise

Hillslope Processes

Dedicated Experiments

What is a transient event?

- The burst of high-frequency seismic energy reveals an intense sediment transport in gullies or landslide scars
- The induced erosion may alter the stability of slopes (stream incision, bank erosion...) and may trigger a mass movement (*cf.* the Ramche Debris Flow)
- The debris removal will thus contribute to the generation of high-frequency seismic energy
- These episodes of seismic noise are clearly consistent with peaks of sediment load presumably associated to landslides
- Towards a seismic measurement of eroded volumes, sediment input and denudation rates ?

River Seismic Noise

Hillslope Processes

Dedicated Experiments

What is a transient event?

- The burst of high-frequency seismic energy reveals an intense sediment transport in gullies or landslide scars
- The induced erosion may alter the stability of slopes (stream incision, bank erosion...) and may trigger a mass movement (*cf.* the Ramche Debris Flow)
- The debris removal will thus contribute to the generation of high-frequency seismic energy
- These episodes of seismic noise are clearly consistent with peaks of sediment load presumably associated to landslides
- Towards a seismic measurement of eroded volumes, sediment input and denudation rates ?

River Seismic Noise

Hillslope Processes

Dedicated Experiments • 0 0 0

イロトズ 得 トイモト イヨト

Landscape Evolution

- Erosion Processes
- Monitoring Sediment Transport

2 River Seismic Noise

- Monitoring Bed Load Transport
- Location of Sediment Transport

Hillslope Processes Debris Flow Monitoring

Dedicated ExperimentsTaiwan

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Monitoring extreme geomorphic events

The Chenyoulan catchment

Typhoon season (June to October 2010): 10 broadband stations and 4 short period sensors

River Seismic Noise

Hillslope Processes

Dedicated Experiments

・ロトス 御 ト シミト ・ヨト

ъ

Monitoring extreme geomorphic events

The Chenyoulan catchment

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Monitoring extreme geomorphic events

・ロッズ 母・ (玉・ 玉・ つくで)

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Monitoring extreme geomorphic events

JOC CO

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Monitoring extreme geomorphic events

First results

€ 990

▲ロンズ間と少差と ▲ ヨン

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Monitoring extreme geomorphic events

First results

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

River Seismic Noise

Hillslope Processes

Dedicated Experiments

Conclusions & future works

- Analysis of high-frequency river seismic noise depicts a potential to monitor spatially and continuously the bed load transport
- Location of sediment transport along rivers can be performed using cross-correlation of seismic noise at pairs of stations
- High-frequency seismic noise also reveals interesting features for the detection and the location of debris flows
- Such a monitoring of surface processes can lead to seismically measure erosion and its spatio-temporal variations
- Dedicated experiments are required to translate seismic signals into geomorphic observations like sediment transport, erosion rates...