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Planetary Magnetic fields

I Mercury, Earth, Jupiter, Saturn, Uranus & Neptune possess strong
internal magnetic fields that shield them against the solar wind.
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Example: Dynamo located in Earth’s core

(Image courtesy of Julien Aubert, IPG Paris)
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Example: Dynamo located in Earth’s core

(Image courtesy of Julien Aubert, IPG Paris)

I What type of motions occur in planetary cores to generate, sustain
and cause the evolution of strong, global, magnetic fields?
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Equations governing field generation and evolution
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Equations governing field generation and evolution

I Conservation of Momentum:

ρ0
∂u

∂t
+ ρ0(u · ∇)u + 2ρ0Ω(ẑ × u) = −∇P + ρ0αg0T

r

r0

+
1

µ0
((∇× B) × B) + ρ0ν∇

2u
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I Magnetic Induction (Maxwell’s eqns under MHD approx):

∂B

∂t
= ∇× (u × B) + η∇2B
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I Magnetic Induction (Maxwell’s eqns under MHD approx):

∂B

∂t
= ∇× (u × B) + η∇2B

I Heat transport:

∂T

∂t
+ (u · ∇)T = κ∇2T
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Importance of flow magnitude estimates

I Estimates of typical flow speed U in planetary cores are required:
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Importance of flow magnitude estimates

I Estimates of typical flow speed U in planetary cores are required:

I Dynamics: e.g. Relative importance of inertia and rotation,

Ro =
|ρ0(u · ∇)u|

|2ρ0Ω(bz × u)|
=

U

2ΩD
Rossby number

- Need Ro << 1 for Taylor’s Constraint
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Importance of flow magnitude estimates

I Estimates of typical flow speed U in planetary cores are required:

I Dynamics: e.g. Relative importance of inertia and rotation,

Ro =
|ρ0(u · ∇)u|

|2ρ0Ω(bz × u)|
=

U

2ΩD
Rossby number

- Need Ro << 1 for Taylor’s Constraint

I Kinematics: e.g. Relative importance of advection vs diffusion

Rm =
|∇ × (u × B)|

|η∇2B|
=

UD

η
Magnetic Reynolds Number

- Need Rm << 1 for Frozen Flux Hypothesis
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How to estimate flow magnitude U ?

I Estimates of U are sometimes derived from dynamical balance
arguments (Starchenko & Jones, 2002; Stevenson, 2003; Christensen & Aubert, 2006).
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How to estimate flow magnitude U ?

I Estimates of U are sometimes derived from dynamical balance
arguments (Starchenko & Jones, 2002; Stevenson, 2003; Christensen & Aubert, 2006).

I Or, if have magnetic observations of B and ∂B/∂t, then may obtain
estimates of U via the induction equation

∂B

∂t
= ∇× (u × B) + η∇2B
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Previous estimates of U from magnetic observations

I 1. Tracking motions of non-dipole field features (westward drift)
(Bullard et al., 1950)
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Previous estimates of U from magnetic observations

I 1. Tracking motions of non-dipole field features (westward drift)
(Bullard et al., 1950)

I 2. Determination of flow normal to null flux curves
(Backus, 1968; Booker, 1969; Whaler & Holme, 2007)

I 3. Inversion of radial field (Br ) and secular variation(∂Br/∂t) for full
core surface flow. (Bloxham & Jackson, 1991; Holme & Olsen, 2006)

I Previous estimates are flawed because:
I (i) Concern only small part of global flow or suffer non-uniqueness.
I (ii) Ignore unobserved small length scales field and flow.

I AND cannot provide estimate of upper limit to core flow magnitude.

I Is it possible to take another approach?
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Proposed strategy

I Adopt global view to estimate only typical flow magnitude U .
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Proposed strategy

I Adopt global view to estimate only typical flow magnitude U .

I Make simplifying assumptions & test using dynamo simulations.

I Utilize recent high quality satellite and observatory observations.

I Quantify range of plausible flow magnitudes.
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Talk Outline

1. Motivation

2. Theory

3. Synthetic Tests

4. Global field models from magnetic observations

5. Flow magnitude in Earth’s core

6. Discussion

7. Summary
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Simple theory of induction at core surface I

I Begin with the radial induction equation at the core surface

∂Br

∂t
+ uH · (∇HBr ) + Br (∇H · uH) = η

[
1

r

∂2

∂r2
(r2Br ) + ∇2

HBr

]
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+ uH · (∇HBr ) + Br (∇H · uH) = η

[
1

r

∂2

∂r2
(r2Br ) + ∇2

HBr

]

I Making the frozen flux approximation and assuming motions close to
the core surface are predominantly toroidal this simplifies to

∂Br/∂t + uH · (∇HBr ) = 0
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Simple theory of induction at core surface I

I Begin with the radial induction equation at the core surface

∂Br

∂t
+ uH · (∇HBr ) + Br (∇H · uH) = η

[
1

r

∂2

∂r2
(r2Br ) + ∇2

HBr

]

I Making the frozen flux approximation and assuming motions close to
the core surface are predominantly toroidal this simplifies to

∂Br/∂t + uH · (∇HBr ) = 0

I Define an operator expressing the root mean square (RMS) value of
a scalar field over a spherical surface S

< x >=

√
1

4π

∫

S

x2 sin θdθ dφ
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Simple theory of induction at core surface I

I Begin with the radial induction equation at the core surface

∂Br

∂t
+ uH · (∇HBr ) + Br (∇H · uH) = η

[
1

r

∂2

∂r2
(r2Br ) + ∇2

HBr

]

I Making the frozen flux approximation and assuming motions close to
the core surface are predominantly toroidal this simplifies to

∂Br/∂t + uH · (∇HBr ) = 0

I Define an operator expressing the root mean square (RMS) value of
a scalar field over a spherical surface S

< x >=

√
1

4π

∫

S

x2 sin θdθ dφ

I Applying this operator, the RMS value of the radial secular variation
at the core surface can then be written as

< ∂Br/∂t >=< uH · (∇HBr ) >
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Simple theory of induction at core surface II

I From the definition of the scalar product

cos γ =
uH · (∇HBr )

|uH| |∇HBr |
,

where γ is the angle between uH and ∇HBr .
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Simple theory of induction at core surface II

I From the definition of the scalar product

cos γ =
uH · (∇HBr )

|uH| |∇HBr |
,

where γ is the angle between uH and ∇HBr .

I Substituting we find

< ∂Br/∂t >=< |uH| |∇HBr | cos γ >
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Simple theory of induction at core surface II

I From the definition of the scalar product

cos γ =
uH · (∇HBr )

|uH| |∇HBr |
,

where γ is the angle between uH and ∇HBr .

I Substituting we find

< ∂Br/∂t >=< |uH| |∇HBr | cos γ >

I But if |uH|, |∇HBr | and cos γ are spatially uncorrelated then

< uH >=
< ∂Br/∂t >

< ∇HBr > < cos γ >
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Simple theory of induction at core surface III

I For a spherical harmonic representation of the main field and secular
variation this can be written in terms of the Lowes spectra as,

< uH >=

√
∞∑
l=1

(l+1)
(2l+1)Sl

√
∞∑
l=1

l(l+1)2

c2(2l+1)Rl < cos γ >

.

where

Rl = (l + 1)
(a

c

)2l+1 l∑

m=0

(gm
l )2 + (hm

l )2

and

Sl = (l + 1)
(a

c

)2l+1 l∑

m=0

(ġm
l )2 + (ḣm

l )2

EOST Seminar, Oct 2008 13 / 39



Talk Outline

1. Motivation

2. Theory

3. Synthetic Tests

4. Global field models from magnetic observations

5. Flow magnitude in Earth’s core

6. Discussion

7. Summary

EOST Seminar, Oct 2008 14 / 39



Suite of numerical dynamo models for tests

Case Ra Ek Pm Rm Ro

M1 3 · 105 10−3 4 110 2.75 · 10−2

M2 1.5 · 106 3 · 10−4 2 96 1.44 · 10−2

M3 3 · 106 3 · 10−4 3 296 2.96 · 10−2

M4 8 · 106 2 · 10−4 3 487 3.25 · 10−2

M5 1.5 · 107 1 · 10−4 2 329 1.65 · 10−2

M6 8 · 106 1 · 10−4 2 177 8.85 · 10−3

M7 1.5 · 107 1 · 10−4 4 617 1.54 · 10−2

M8 1.2 · 108 3 · 10−5 2.5 876 1.05 · 10−2

M9 7.5 · 106 2 · 10−4 0.5 51 2.04 · 10−2

Earth 1020 3 · 10−14 10−5 400 − 4000 10−6 − 10−5

I Calculated using pseudo-spectral dynamo code of Wicht (2002).

I Pr = 1 for all models considered.

I Models span at least order of magnitude in Ra, Ek and Pm.

I Models approach what is believed to be Earth-like Rm and Ro.
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Results of tests: < cos γ > and < uH >

Case < cos γ > < uH >calc / < uH >true

M1 0.633 0.849
M2 0.628 0.962
M3 0.661 0.902
M4 0.677 0.985
M5 0.667 0.989
M6 0.644 1.026
M7 0.681 1.002
M8 0.667 0.951
M9 0.641 1.319
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Results of tests: < cos γ > and < uH >

Case < cos γ > < uH >calc / < uH >true

M1 0.633 0.849
M2 0.628 0.962
M3 0.661 0.902
M4 0.677 0.985
M5 0.667 0.989
M6 0.644 1.026
M7 0.681 1.002
M8 0.667 0.951
M9 0.641 1.319

I Additional tests show spatially uncorrelated fields.

I < cos γ > in simulations lies in range 0.6 - 0.7.

I Method typically retrieves true flow magnitude to within 10%.
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Spatial variations in |cosγ|

cos γ at r=0.975 Radial field at r=1
Radial vorticity at r=0.975

(Snapshot from model M2)

I Bimodal distribution of <cos γ>.

I Low <cos γ> e.g. at helical convection columns.

I High <cos γ> e.g. at drifting low latitude flux concentrations.

I No systematic correlation between |∇HBr |, |uH | and cos γ.

I On average, γ = 40 − 50◦.
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Variation of <cos γ> with control parameters
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, Pm=0.5).

Earth (Ra=1.10
23

, Ek=5.10
-15

, Pm= 1.10
-6

).

<cos γ > = ARa
 x1

Ek
x2

Pm
x3

A=0.55, x1=0.023, x2=0.023, x3=0.023

<cos γ>
Earth

=0.595

I Weak dependence on control parameters: (Ra · Ek · Pm)0.023.
I For control parameters appropriate to Earth’s core < cos γ >∼ 0.6.
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Magnetic observations

I High quality, long-term observations from worldwide network.

(e.g. Lerwick Obs (BGS) and Martin de Viviers Obs (EOST))
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Magnetic observations

I High quality, long-term observations from worldwide network.

(e.g. Lerwick Obs (BGS) and Martin de Viviers Obs (EOST))

I LEO Satellites: short term but truely global coverage.

I How are these observations used to obtain core surface field models?
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Time-dependent field modelling

I Deterministically correct data for magnetospheric and crustal
magnetic field; then model as potential field with internal source,

V (r , θ, φ, t) = a

L∑

l=1

l∑

m=0

(a

r

)l+1

gm
l (t)Y m

l (θ, φ),
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Time-dependent field modelling

I Deterministically correct data for magnetospheric and crustal
magnetic field; then model as potential field with internal source,

V (r , θ, φ, t) = a

L∑

l=1

l∑

m=0

(a

r

)l+1

gm
l (t)Y m

l (θ, φ),

I Account for SV via cubic B-spline basis for Gauss coefficients,

gm
l (t) =

∑

n

gmn
l Mn(t),

- Use SH expansion to degree L=20 and knot points every 0.2 yrs.
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e [d − f(m)] + R(m)
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Time-dependent field modelling

I Deterministically correct data for magnetospheric and crustal
magnetic field; then model as potential field with internal source,

V (r , θ, φ, t) = a

L∑

l=1

l∑

m=0

(a

r

)l+1

gm
l (t)Y m

l (θ, φ),

I Account for SV via cubic B-spline basis for Gauss coefficients,

gm
l (t) =

∑

n

gmn
l Mn(t),

- Use SH expansion to degree L=20 and knot points every 0.2 yrs.

I Find model that minimizes following cost function at core surface,

Θ = [d − f(m)]TC−1
e [d − f(m)] + R(m)

I R(m) is a norm measuring spatial + temporal complexity at CMB.
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A core suface regularized model for 21st century

I Preliminary model:
I CHAMP, Ørsted and SAC-C: xCHAOS datatset of N. Olsen.
I Data span 2000-2008
I Quiet-time, night-side, vector data only < 60 deg geomag. lat.
I Sub-sample to get quietest data on equal area grid, reset every 0.2yrs
I Regularization: entropy norm in space and a curvature norm in time.
I L1 norm measure of misfit (IRLS).
I Check against 1yr dif of corrected monthly means from observatories.

.
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I Work on final model ongoing:
I Including observatory data in inversion.
I High order splines so secular acceleration and jerks can be studied.
I Entropy norm in time to capture sharper changes.
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A core suface regularized model for 21st century

I Preliminary model:
I CHAMP, Ørsted and SAC-C: xCHAOS datatset of N. Olsen.
I Data span 2000-2008
I Quiet-time, night-side, vector data only < 60 deg geomag. lat.
I Sub-sample to get quietest data on equal area grid, reset every 0.2yrs
I Regularization: entropy norm in space and a curvature norm in time.
I L1 norm measure of misfit (IRLS).
I Check against 1yr dif of corrected monthly means from observatories.

.

I Work on final model ongoing:
I Including observatory data in inversion.
I High order splines so secular acceleration and jerks can be studied.
I Entropy norm in time to capture sharper changes.

I In next section results with the preliminary model are presented;
tests with other models (e.g. GRIMM, xCHAOS) give similar results.
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Radial field at core surface in 2004
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Secular variation at core surface in 2004
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Fit to observatory data

I NGK
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Fit to observatory data

I NGK

I MBO
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Fit to observatory data

I NGK

I MBO

I AMS
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Spectra at core surface

0 5 10 15 20
Spherical Harmonic Degree (l)

10000

1e+06

1e+08

1e+10

Po
w

er
 / 

(n
T

)2  o
r 

(n
T

/y
r)

2

MF in 2004
SV in 2004

EOST Seminar, Oct 2008 26 / 39



Talk Outline

1. Motivation

2. Theory

3. Synthetic Tests

4. Global field models from magnetic observations

5. Flow magnitude in Earth’s core

6. Discussion

7. Summary

EOST Seminar, Oct 2008 27 / 39



Variation of <uH> estimate with <cosγ>
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Predicted flow magnitude from observed field to L=10

I < uH >= 13.6km/yr for range of < cos γ >= 0.6.
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Variation of <uH> estimate with <cosγ>
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Predicted flow magnitude from observed field to L=10

I < uH >= 13.6km/yr for range of < cos γ >= 0.6.

I < uH >= 10 − 17km/yr for range of < cos γ >= 0.5 − 0.7.
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Temporal variation <uH> (L = 10,<cosγ>=0.6)
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New method with L=10, <cos γ>=0.6
Study of Amit and Olson (2006)

I For 1840-1990 (gufm1) obtain similar variations to previous studies.
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Temporal variation <uH> (L = 10,<cosγ>=0.6)
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New method with L=10, <cos γ>=0.6
Study of Amit and Olson (2006)

I For 1840-1990 (gufm1) obtain similar variations to previous studies.

I Can use method to monitor variations in magnitude of core flow.
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Variation of <uH> with truncation degree L

I Can estimate effects of small scales by extrapolating spectra.
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Variation of <uH> with truncation degree L

II Can estimate effects of small scales by extrapolating spectra.
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I For MF: Rl(c) = R̄χl with χ = 0.99 (Buffett & Christensen, 2007).

I For SV: Sl (c) = Rl (c)
τ
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Variation of <uH> with <cosγ> and L

Spherical harmonic degree of truncation (L)
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Variation of <uH> with <cosγ> and L

Spherical harmonic degree of truncation (L)
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I Estimated upper limit: < uH >∼ 70 km/yr
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Talk Outline

1. Motivation

2. Theory

3. Synthetic Tests

4. Global field models from magnetic observations

5. Flow magnitude in Earth’s core

6. Discussion

7. Summary
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Estimated range for U in Earth’s core

I Lower limit
I Take < cos γ >= 0.7.
I Use only estimate from observed large scale magnetic field (L = 10).
I => 10 km/yr

I Upper limit
I Take < cos γ >= 0.5.
I Use Buffett & Christensen (2007) extrapolation of magnetic spectra.
I Use Christensen & Tilgner (2004) estimate of dissipation scale with large

uncertainty: L ∼ 300 − 700 => 70 km/yr
I Ratio volume averaged to surface flow magnitude: U ∼ 1.2 < uH >.
I => 85 km/yr

I Range for U : 10 − 85 km/yr.
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Implications for the geodynamo

I With estimate U ∼ 10 − 85km/yr we can return to Rm and Ro.
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I With estimate U ∼ 10 − 85km/yr we can return to Rm and Ro.

I

Ro =
U

2ΩD
∼ 10−6 − 10−5

I Ro << 10−4 => On average inertia plays small role in force balance.

I

Rm =
UD

η
∼ 400 − 4000

I Rm >> 100 => On average Frozen Flux Hypothesis holds well.

I Traditional approx. are on average reasonable even if field aligned
flow and unobserved small scales are considered.

I Any Earth-like dynamo simulation must respect these constraints.

I Can we apply the method to other planets?
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Application to other planets: Jupiter
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Application to other planets: Jupiter

I JUNO (NASA), orbiter mission to arrive in 2016.
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Application to other planets: Mercury

I Bepi Colombo (ESA): two orbiters to reach Mercury in 2019.
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Talk Outline

1. Motivation

2. Theory

3. Synthetic Tests

4. Global field models from magnetic observations

5. Flow magnitude in Earth’s core

6. Discussion

7. Summary
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Summary

I Developed simple approach to estimate U in planetary cores given
observed spectrum of B and ∂B/∂t.
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Summary

I Developed simple approach to estimate U in planetary cores given
observed spectrum of B and ∂B/∂t.

I Successfully tested on a suite of geodynamo models.

I Find < cos γ > depends only very weakly on control parameters.
Range of 0.5 − 0.7 likely for Earth’s core.

I Predicts < uH >∼ 10 − 17 km/yr from large scale MF and SV.

I Upper limit predicted by spectral extrapolation ∼ 85 km/yr

I U ∼ 10 − 85 km/yr => Ro << 10−4 and Rm >> 100.

I Method could in future be applied to other planets.
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3 parameter scaling law
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I |cos γ|=1 => Local flow induces maximium secular variation.

I |cos γ|=0 => Local flow induces no secular variation.

I <cos γ> = Efficiency of induction by toroidal flow at core surface

I Scaling law suggests the key non-dimensional parameter is
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I In models, Pr = ν/η = 1 so this quantity can be simplified to,

αg0∆TD

ηΩ
= Ram · Pm =

Ra∗

Eη

I Therefore < cos γ > depends on:
I (i) How hard system is driven compared to rotational constraints
I (ii) How important magnetic diffusion is compared to viscous

diffusion.

I Simulations have Ra · Ek · Pm comparable to planetary cores.
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Near high latitude columnar convection rolls in M2

I Flow often tends to be approximately aligned with contours of Br .
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Rapidly drifting flux features at lower latitudes

I Flow often tends to be across with contours of Br .
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Extrapolation of main field spectrum
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Extrapolation after Buffet and Christensen (2007)
Extrapolation after Voohries (2004)
Extrapolation after Roberts et al. (2003)

I Explored 3 possible empirical extrapolations of main field spectra.

I RED: Rl(c) = R̄χl
(Buffett & Christensen, 2007).

I GREEN: Rl(c) = K (l + 1/2)/l(l + 1) (Voohries, 2004)

I BLUE: Rl(c) = Aexp(−Bl) (Roberts et al., 2003)
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Extrapolation of secular variation spectrum
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From xCHAOS field Model (Olsen and Mandea, 2008)
Extrapolation after Buffett and Christensen (2007)
Extrapolation after Voohries (2004)
Extrapolation after Roberts et al. (2003)

I SV spectra obtained by assuming relation between MF and SV at
large scales continue to hold out to the dissipation scale.

I

τL =

√
RL(c)

SL(c)
= CL−D .
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Variation of <uH> with truncation degree L
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Variation of <uH> with <cosγ> and L

Spherical harmonic degree of truncation (L)
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Variation of <uH> with <cosγ> and L

Spherical harmonic degree of truncation (L)
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For MF extrapolation: Rl(c) = Aexp(−Bl) (Roberts et al., 2003)
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I Method requires that on average:
I (i) Advection dominates diffusion in induction eqution.
I (ii) Flow at outer surface of field generation region toroidal.
I (iii) | < uH > |,| < ∇HBr > | and cos γ are uncorrelated.

I Scaling law for < cos γ > from suite of numerical dynamos.

I Sufficient magnetic observations to model MF and SV spectra.

I Estimate of magnetic dissipation scale required.

I Range NOT formal limits, but provide quantified estimate.
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Planetary composition

Credit: NASA
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3.1 Field Modelling Methodology
• Assuming the region between the satellite observations and the CMB
   is to a first approximation an insulator then we write,

V (r, θ, φ, t) = a

L∑
l=1

(a

r

)l+1
l∑
m

[gm

l
(t) cos mφ + hm

l
(t) sinmφ]Pm

l
(θ)

B = −∇V

• Then since the magnetic field is divergent free, V satisfies Laplace’s 
   equation and it can be written as a sum of spherical harmonics:

• We choose to expand the Gauss coefficient in a basis of cubic B-splines,

gm

l
(t) =

T∑
n=1

gmn

l
Bn(t)

• A knot spacing of 0.2yrs and maximum SH degree L=24 are employed.

Θ = [d − f(m)]T Ce
−1Wf [d − f(m)] + R(m)

• A well-converged CMB field solution is then sought by mimimising the cost
  function: 

• The weight matrix is iteratively updated (IRWLS) to implement an L1 misfit
   measure.



  

3.2 Specification of regularization norms

• Regularization in space needed to: (i) Ensure convergence at CMB
                                                           (ii) Choose minimum norm soln
                                                              (Shure, Parker and Backus, 1982)
 
• Regularization in time necessary to ensure that time evolution at CMB is 
   smooth and that SV and SA are well converged.

• The regularization added to the cost function can be expressed as:

R(m) =
λS

(te − ts)

∫
te

tS

∫

CMB

RS(m) dΩdt +
λT

(te − ts)

∫
te

tS

∫

CMB

RT (m) dΩdt

• The regularization added to the cost function are chosen to take the form:

RT (m) =

(
∂2Br

∂t2

)2

RS(m) = B2
r

Model QQ:

S(x) = ψ−2d−x ln

(
ψ + x

2d

)
with ψ =

√
x2 + 4d2 and d = ‘default magnitude of x’where

RS(m) = −4ds S(Br) RT (m) =

(
∂2Br

∂t2

)2

Model EQ: .



  

3.3 Why use maximum entropy methods?

• Classical quadratic regularization tends to over-smooth images by 
  assigning low probability to models with sharp contrast.

• Ed Jaynes (1957) set out the rationale for using a maximum entropy 
  method to assign probabilities in the lack of other information:

• The maximum entropy method has been applied with great success in 
diverse areas e.g. astronomy, image processing and medical tomography.

• It was introduced to geomagnetism by Jackson (2003) we implement it
  using the method of Gillet et al., (2007).   

“ the maximum-entropy estimate ... is the least biased estimate   
   possible on the given information; i.e. it is maximally 
   non-committal with regard to missing information”

Jaynes (1957), Physical Review, Vol 106, pp 620-630. 



  

3.3 Why use maximum entropy methods?

A

B C

CMB Field Modelling
(a) Original (dynamo)
+ crustal field
(b) Maxent retrieval
(c) Quadratic retrieval
(Jackson et al., 2007)

(a)

(b)

(c)

(a)

(b)

(c)

Image Processing
(a) Original
(b) With Gaussian noise
(c) With 50% loss
(Gull & Skilling, 1984)



  

4.3 CMB field: Z component
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4.3 CMB field: Z component
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