Inclinaison du noyau solide et mouvement du pôle de rotation de la Terre

Mathieu Dumberry University of Leeds

Présentation à L'Institut de Physique du Globe de Strasbourg 16 novembre 2006

Summary

- Hypothesis: Markowitz wobble can be explained by torques on the inner core
- Two possible mechanisms for the torque: gravitational or electromagnetic
- We can explain general characteristics of Markowitz wobble
- Provides a way to probe dynamics inside the tangent cylinder
 - Torsional oscillations
 - Time-dependent thermal wind

Variations in Earth's rotation

- Earth's rotation is not constant
 - changes in its rate of rotation: changes in Length of day
 - changes in its direction with respect to crust: polar motion
 - timescale of the changes: hours to millions of years
- Cause of these changes
 - Torques from Moon, Sun and Planets
 - Deformation leading to changes in moment of inertia
 - Relative motion between core, mantle, fluid envelope

Long period polar motion (> 1 day)

Variations in the position of the Earth's rotation axis: polar motion

• True Polar Wander:

- Mantle convection: 10^6 year timescale
- Post glacial rebound: 10^3 year timescale
- change in polar ice mass: $10^2 10^3$ year timescale
- Annual Wobble:
 - From mass transport in atmosphere, oceans, ground water
- Chandler Wobble:
 - Free Eulerian precession with a period of \sim 14 months
- Markowitz Wobble
 - Decadal polar motion

Markowitz Wobble

• Motion of the rotation axis viewed from above geographic North Pole

- Markowitz wobble:
 - amplitude 30-50 milliarcseconds
 - quasi-periodic \sim decades
 - polarized
- Potential problems:
 - artifact of data
 - artifact of signal modelling
 - no known physical mechanism

What is the physical mechanism responsible for the Markowitz Wobble?

- Exchange of angular momentum between the Mantle and fluid envelope (atmosphere and oceans)
 - Free wobble of coupled Ocean Solid Earth system (Dickman, 1983)
 - Forcing from climate (*Celaya et al., 1999*)

resulting polar motion is \sim 10 times too small (Gross et al. 2005)

- Exchange of angular momentum between the Mantle and the Core
 - Electromagnetic coupling at CMB (*Greff-Leftz & Legros, 1995*)
 - Topographic coupling at CMB (Greff-Leftz & Legros, 1995; Hide et al, 1996; Hulot et al., 1996)

resulting polar motion is ~ 10 times too small

- Influence of the Inner Core
 - Free Eulerian precession of tilted Inner Core (Busse, 1970)
 - Forced polar motion due to equatorial torques on Inner Core

Equatorial Torques on Inner core

- Equatorial torques produce a tilt of elliptical Inner Core
- Conservation of angular momentum + internal torques:
 - offset between rotation axis and geometric figure of Mantle

Equatorial torques on the inner core

- Need a torque on the inner core that produces:
 - polar motion with amplitude 30-50 milliarcseconds
 - with period of \sim decades
 - and oriented along a specific longitude
- What is the dynamical mechanism producing the torque?
- Hypothesis:
 - Equatorial gravitational torque
 - * from inner core topography misaligned with mantle density structure
 - Equatorial electromagnetic torque
 - \ast from poloidal flows acting on B_r at ICB

Goal

- Extract information on core dynamics from its effect on polar motion
- Analogy: decadal variations in axial rotation, or changes in length of day

• Connection with core flows predicted by geodynamo theory

Torsional oscillations in core flows

- Rigid azimuthal oscillations of cylindrical surfaces (Braginsky, 1970)
- Cylinders extend to CMB: should be contained in core flows
- Timescale of decades: we can perhaps observe them in historical data

Torsional oscillations in core flows

- Rigid azimuthal oscillations of cylindrical surfaces (Braginsky, 1970)
- Cylinders extend to CMB: should be contained in core flows
- Timescale of decades: we can perhaps observe them in historical data
- Torsional oscillations in Earth's core (Zatman & Bloxham, 1997):

Confidence test: angular momentum balance

- Change in core angular momentum carried by torsional oscillations
 - must equal change in angular momentum of mantle

- Should result in changes in rotation rate of the mantle
 - changes in length of day

Variations in length of day

- shows that Δ LOD are from core-mantle angular momentum exchange
- confirms the presence torsional oscillations
- suggests that LOD data, field models, and inverted core flows are all valid

A connection between decadal polar motion and core dynamics?

- torques on the inner core induced by flows near the ICB
- Can we find time-dependent torques on the inner core consistent with:
 - core-dynamics
 - observed Markowitz wobble
- which is the appropriate flow regime near the inner core boundary?

Torsional oscillations

changes in thermal wind

Thermal wind inside tangent cylinder

- observed in numerical simulations (e.g. Sreenivasan and Jones, 2006)
- observed in laboratory experiments (e.g. Aurnou et al., 2003)

Thermal wind inside tangent cylinder

consistent with secular variation inside the tangent cylinder

from Olson & Aurnou, Nature, 1999

• decadal changes in thermal wind?

Axial electromagnetic torques on the inner core

- Torsional oscillations in the fluid core
 - oscillations of rigid cylinders
 - decade periods

- Electromagnetic coupling at Inner core boundary
 - Inner core is entrained by fluid motion

Equatorial torque produced by inner core – mantle gravitational coupling

- Inner core boundary is an equipotential surface
- Topography at ICB reflects mantle density structure

Equatorial gravitational torque on the inner core

Gravitational potential Φ_m at ICB from $\delta \rho_m$ in the mantle

Resulting inner core deformation producing an equivalent $\delta \rho_i$

Equatorial gravitational torque on the inner core

Gravitational potential Φ_m at ICB from $\delta \rho_m$ in the mantle

Torque on the inner core:

$$\Gamma = -r imes \int_V \delta
ho_i
abla \Phi_m \, dV$$

Formulation of the problem

- We need to include internal coupling
 - Internal gravitational and pressure torques
- Elastic deformations
- Earth model for Moments of Inertia, ellipticities...
- We use models developed for study of forced nutations

A prediction of polar motion from a realistic scenario

- Use mantle density anomalies obtained from seismology
- Calculate equilibrium hydrostatic shape of inner core
- Get history of inner core axial angular displacement from geomagnetism
- Integrate equations in time
- Cross our fingers
- Compare results with observed Markowitz wobble

Model of Mantle density anomalies

• Mantle density model obtained by inversion from splitting functions of free oscillation modes (Ishii and Tromp, 2001; 2004)

- Difficulty of building a density model inferred from seismic tomography:
 - Compressional (V_p) and shear (V_s) seismic velocities are related to density by

$$V_p^2=(\kappa+4\mu/3)/
ho,~~V_s^2=\kappa/
ho$$

- Scaling to get density from seismic velocities:

 $d\ln
ho=\gamma_p\,d\ln V_p,\;\;d\ln
ho=\gamma_s d\ln V_s$

- With splitting functions, get density directly
- Does not constrain CMB topography

Axial fluid velocity forcing the Inner Core

- Core surface flow models from time-variations of the geomagnetic field
- Assume rigid flows: torsional oscillations
- Assume inner core follows fluid motion:

Axial rotation of Inner Core

- Integrate rotation rate of inner core to obtain a time-history of $\phi(t)$
- Get $\phi(t)$ for various inner core viscosity values

angular velocity of the inner core

angular displacement of the inner core

Predicted vs Observed polar motion

- Orientation is offset by \sim 15-30 degrees
- Details depend on precise history of $\phi(t)$ and on inner core viscosity

Problem: predicted changes in LOD from axial inner core rotation history

- historical axial inner core variations: gravitationally coupled with mantle
- if $\tau = 5$ yr, entrains changes in length of day 50 times larger than observed!

- Flows at ICB must be smaller than at CMB
- time-dependent flows inside the tangent cylinder cannot be purely rigid
- Necessarily involves z-dependent flows: thermal wind
- Markowitz cannot be explained by gravitational torques

Equatorial torque from electromagnetic coupling at ICB

• Electromagnetic torque on inner core from thermal wind flow

Equatorial torque from electromagnetic coupling at ICB

• assume changes in v_{ϕ} at CMB correspond to changes in v_{θ} at ICB

- assume B_r at ICB is a dipolar, with an amplitude of 7 mT, inclined at 25°
- integrate evolution of polar motion

Predicted vs Observed polar motion

Conclusions

- Torsional oscillations + gravitational torque lead to polar motion which shares characteristics with Markowitz wobble
- BUT: axial angular displacements of inner core are incompatible with observed changes in length of day
 - azimuthal flows must be smaller at ICB than at CMB
 - flows cannot be rigid inside the tangent cylinder
 - gravitational torques cannot explain Markowitz wobble
- Decade timescale flows inside tangent cylinder must involve changes in thermal wind
- Time-dependent thermal wind + electromagnetic torque is promising (though results are preliminary)
- requires $B_r \approx 7$ mT at ICB: compatible with value inferred from nutations (*Buffett et al. 2002*)

What's next?

 \Rightarrow IF we can improve the fit between the observed and predicted polar motion \Rightarrow shows that this is the mechanism behind Markowitz wobble

• Consequently, we can use this fit to constrain:

- Magnetic field near the ICB
- Viscous relaxation timescale of the inner core
- convective flows inside the tangent cylinder
- Can we detect a tilt of the inner core in surface gravity field data?

Full Screen

Equatorial torque from electromagnetic coupling at ICB

• Electromagnetic torque on inner core from torsional oscillations

Dynamical constraint in the core

• Force balance in the Earth's fluid core

$$ho \left(rac{\partial v}{\partial t} + v \cdot
abla v + 2 \Omega imes v
ight) = -
abla p + rac{1}{\mu_o} (
abla imes B) imes B + C \hat{r} +
u
abla^2 v$$

• Magnetostrophic balance in the Earth's fluid core

$$2
ho \Omega imes v = -
abla p + rac{1}{\mu_o} (
abla imes B) imes B + C\hat{r}$$

Coriolis = pressure + Lorentz + buoyancy

• Integrate azimuthal component on cylinder surfaces: Taylor's constraint, a condition on the morphology of the magnetic field in the core

$$\int_{\Sigma} \left(\left(
abla imes B
ight) imes B
ight)_{\phi} \, d\Sigma = 0 \; .$$

Torque from magnetic force = 0

Torsional Oscillations

- When Taylor's constraint is violated:
 - magnetic torque is balanced by a rigid acceleration of the cylinder surface

- System accepts oscillatory solutions of rigid cylinder surface
- Torsional oscillations (Braginsky, 1970), typical periods of \sim decades

