Structure thermique des lithosphères océaniques et interaction lithosphère-asthénosphère: impact des failles transformantes

Caroline Dumoulin
Laboratoire de Planétologie et Géodynamique, Nantes

Collaborations: Gaël Choblet
Marie-Pierre Doin (ENS Paris)
Olivia Golle
Introduction

- la lithosphère thermique
Introduction

- la lithosphère thermique

- CLT froide de la convection
Introduction

- la lithosphère thermique

 - CLT froide de la convection

- les modèles de refroidissement

Huang et Zhong (2005)
Introduction

aplatissement des fonds océaniques?
aplatissement des fonds océaniques?

Crosby et al. (2006)
aflatissement des fonds océaniques?

Maggi et al. (2006)
Introduction

- existence de la convection petite échelle?
Introduction

- existence de la convection petite échelle?
 - viscosité asthénosphérique
• existence de la convection petite échelle?
 - viscosité asthénosphérique
 - anisotropie
• existence de la convection petite échelle?
 - viscosité asthénosphérique
 - anisotropie
 - anomalies du géoïde, amplitudes et longueurs d’onde des anomalies gravi + signature thermique/dynamique du géoïde
• existence de la convection petite échelle?
 - viscosité asthénosphérique
 - anisotropie
 - anomalies du géoïde, amplitudes et longueurs
d’onde des anomalies gravi + signature thermique/dynamique
du géoïde
 - volcanisme intraplaque non associé à des points chauds
Introduction

- existence de la convection petite échelle?
 - viscosité asthénosphérique
 - anisotropie
 - anomalies du géoïde, amplitudes et longueurs d’onde des anomalies gravité + signature thermique/dynamique du géoïde
 - volcanisme intraplaque non associé à des points chauds

Ballmer et al. (2007)
étes précédentes sur les lithosphères océaniques
• études précédentes sur les lithosphères océaniques

Dumoulin et al. (2001)
- études précédentes sur les lithosphères océaniques
Impact des failles transformantes?
Introduction

.dequeue Impact des failles transformantes?

Dumoulin et al. (2005)

Strasbourg, 22 Mai 2008
Impact des failles transformantes?

Dumoulin et al. (2005)

Morency et al. (2005)
Plan

Partie I: Présentation du modèle

Partie II: Résultats et applications aux domaines océaniques

Partie III: Rôle de la fusion partielle
Partie I: Présentation du modèle
Partie I: Présentation du modèle

- Géométrie cartésienne, 3-D (4x2x1)
Partie I: Présentation du modèle

- Géométrie cartésienne, 3-D (4x2x1)
- Résolution des équations de conservation de la masse, de l’énergie et du moment
Partie I: Présentation du modèle

- Géométrie cartésienne, 3-D (4x2x1)

- Résolution des équations de conservation de la masse, de l’énergie et du moment

- Conditions aux limites et dimensionnement
Partie I: Présentation du modèle

• Rhéologie:
• Rhéologie :
 - newtonienne (fluage par diffusion)
Partie I: Présentation du modèle

• Rhéologie :
 - newtonienne (fluage par diffusion)
 \(\Rightarrow \) viscosité indépendante de \(\varepsilon \)
Partie I: Présentation du modèle

- Rhéologie :
 - newtonienne (fluage par diffusion) \(\Rightarrow \) viscosité indépendante de \(\varepsilon \).
 - viscosité (T)
Partie I: Présentation du modèle

• Rhéologie :
 - newtonienne (fluage par diffusion)
 ⇒ viscosité indépendante de ε.
 - viscosité (T)

$$\nu = \nu_0 \exp\left(-b \frac{T - T_0}{\Delta T}\right)$$

b relié à l’énergie d’activation
ν_0 viscosité dynamique de surface
Partie I: Présentation du modèle

- Rhéologie :
 - Newtonienne (fluage par diffusion)
 \[\Rightarrow \text{viscosité indépendante de } \varepsilon \]
 - Viscosité (T)

\[\nu = \nu_0 \exp\left(-b \frac{T - T_0}{\Delta T}\right) \]

\(b\) relié à l’énergie d’activation
\(\nu_0\) viscosité dynamique de surface

\[\nu = A \exp\left(\frac{E_a}{RT}\right) \]

= Linéarisation d’une loi d’Arrhénius
• Rhéologie :
 - newtonienne (fluage par diffusion)
 ⇒ viscosité indépendante de ε
 - viscosité (T)

$$\nu = \nu_0 \exp\left(-b \frac{T - T_0}{\Delta T}\right)$$

b relié à l’énergie d’activation
ν_0 viscosité dynamique de surface

$= \text{linéarisation d’une loi d’Arrhénius}$

- pas de dépendance à la P
• Rhéologie :

- newtonienne (fluage par diffusion)

 \[\nu = \nu_0 \exp \left(-b \frac{T - T_0}{\Delta T} \right) \]

 \[\Rightarrow \text{viscosité indépendante de } \varepsilon \]

- viscosité (T)

 b relié à l’énergie d’activation

 \[\nu_0 \text{ viscosité dynamique de surface} \]

 = linéarisation d’une loi d’Arrhénius

- pas de dépendance à la P

- pas de dépendance au contenu en eau

\[\nu = A \exp \left(\frac{E_a}{RT} \right) \]
• Rhéologie :
 - newtonienne (fluage par diffusion)
 ⇒ viscosité indépendante de \(\varepsilon \)
 - viscosité \((T)\)
 \[\nu = \nu_0 \exp\left(-b \frac{T - T_0}{\Delta T}\right) \]
 \(b\) relié à l’énergie d’activation
 \(\nu_0\) viscosité dynamique de surface
 = linéarisation d’une loi d’Arrhénius
 \[\nu = A \exp\left(\frac{E_a}{RT}\right) \]
 - pas de dépendance à la \(P\)
 - pas de dépendance au contenu en eau
 - pas de dépendance à la taille de grain
Partie I: Présentation du modèle

• Nombre de Rayleigh :

\[Ra = \frac{\alpha \rho_0 g \Delta T d^3}{K \nu_b} \]

\[\rho = \rho_0 \left(1 - \alpha (T - T_0)\right) \]

équation d’état du matériau
Partie I: Présentation du modèle

- Nombre de Rayleigh :

\[Ra = \frac{\alpha \rho_0 g \Delta T d^3}{K \nu_b} \]

\[\rho = \rho_0 \left(1 - \alpha \left(T - T_0\right)\right) \]

équation d’état du matériau

⇒ variations des paramètres (11 simulations)
Partie I: Présentation du modèle

- Nombre de Rayleigh :

\[Ra = \frac{\alpha \rho_0 g \Delta T d^3}{K \nu_b} \]

\[\rho = \rho_0 \left(1 - \alpha (T - T_0) \right) \]

d'équation d'état du matériel

⇒ variations des paramètres (11 simulations)

<table>
<thead>
<tr>
<th>vitesse d'accrétion</th>
<th>0,5 à 5,65 cm/an</th>
</tr>
</thead>
<tbody>
<tr>
<td>longueur de la FT</td>
<td>210 à 840 km</td>
</tr>
<tr>
<td>(offset en âge à la FT)</td>
<td>(4 à 45 Ma)</td>
</tr>
<tr>
<td>énergie d’activation</td>
<td>176 à 264 kJ/mol</td>
</tr>
<tr>
<td>nombre de Rayleigh</td>
<td>10^7 à $1,64 \times 10^8$</td>
</tr>
<tr>
<td>(viscosité asth.)</td>
<td>$(6,51 \times 10^{19}$ à $3,97 \times 10^{18}$ Pa.s)</td>
</tr>
</tbody>
</table>
Partie I: Présentation du modèle

• Déroulement d’une simulation:
 - champ de T initial = modèle de refroidissement d’un 1/2 espace
Partie I: Présentation du modèle

- Déroulement d’une simulation:
 - champ de T initial = modèle de refroidissement d’un 1/2 espace
Partie I: Présentation du modèle

• Déroulement d’une simulation:
 - champ de T initial = modèle de refroidissement d’un 1/2 espace
 - on atteint l’équilibre quasi-statique

Strasbourg, 22 Mai 2008
Partie I: Présentation du modèle

![Graphique de flux de chaleur moyen et température moyenne en fonction du temps](image)
- on calcule un champ moyen (pas de signification réelle)
Partie II: Résultats et applications aux domaines océaniques
Partie II: Résultats et applications aux domaines océaniques

- Description de l’écoulement
• Description de l’écoulement

rouleaux de Richter
Partie II: Résultats et applications aux domaines océaniques
2 échelles d’écoulement: - grande échelle (forcée)
- «petite» échelle (inst. thermiques)
Partie II: Résultats et applications aux domaines océaniques
démarrage de la convection petite échelle
Partie II: Résultats et applications aux domaines océaniques
Partie II: Résultats et applications aux domaines océaniques

à la zone transformante: «edge-driven» convection
Résultats de simulations à 2D
(Huang et al., 2003; Dumoulin et al., 2005)
Partie II: Résultats et applications aux domaines océaniques

trace de la faille transformante
Partie II: Résultats et applications aux domaines océaniques
• «onset» de la convection petite échelle

La figure ci-dessus montre une relation entre deux variables, représentées sur un graphique de coordonnées logarithmiques. Les données sont réparties en différents groupes, indiqués par différents symboles et couleurs. Les légendes expliquent les symboles et les catégories de données :

- Côts vieux de la FT
- Côts jeunes de la FT
- Côts vieux de la FT, cas 7
- Côts jeunes de la FT, cas 7
- Expériences sans FT

Les axes du graphique représentent :
- L'axe des x : $\frac{R_{\alpha}^{-2/3}}{E_{\alpha}^\Delta T L} \left(\frac{d}{R T_i^2} \right)$
- L'axe des y : τ (in Myr)

La relation semble être linéaire, indiquant une certaine régularité dans les données collectées. La ville de Strasbourg, la date 22 mai 2008, est notée en bas à droite.
• Trace de la FT: quantification et conséquences
• Trace de la FT: quantification et conséquences
 - rôle des conditions aux limites?
• Trace de la FT: quantification et conséquences
nbe de Ra nul: écoulement imposé par la diffusion thermique et les conditions aux limites

Strasbourg, 22 Mai 2008
- contrôle de l’angle de la trace de la FT?
- contrôle de l’angle de la trace de la FT?

⇒ deux phénomènes en compétition:
- contrôle de l’angle de la trace de la FT?

⇒ deux phénomènes en compétition:

1. cisaillement dû à l’accrétion
 \(V_s \): vitesse de surface
- contrôle de l’angle de la trace de la FT?

⇒ deux phénomènes en compétition:

1. cisaillement dû à l’accrétion

 \((V_s): \text{vitesse de surface})

2. flottabilité des instabilités thermiques

 \((v_i): \text{vitesse moyenne interne})
contrôle de l’angle de la trace de la FT?

⇒ deux phénomènes en compétition:

1. cisaillement dû à l’accrétion
 (V_s: vitesse de surface)

2. flottabilité des instabilités thermiques
 (v_i: vitesse moyenne interne)
- contrôle de l’angle de la trace de la FT?

⇒ deux phénomènes en compétition:

1. cisaillement dû à l’accrétion
 (V_s: vitesse de surface)

2. flottabilité des instabilités thermiques
 (v_i: vitesse moyenne interne)

\[
v_i = 0.385 \left(Ra_i \frac{RT_i^2}{E_a \Delta T} \right)^{1/2} \frac{K}{d} \quad \text{Solomatov et Moresi (2000)}
\]
profondeur maximale de la base de la lithosphère
profondeur maximale de la base de la lithosphère

axe de la ride

trace de la FT

V_i
profondeur maximale de la base de la lithosphère

axe de la ride

trace de la FT

V_i

V_S

Strasbourg, 22 Mai 2008
profondeur maximale de la base de la lithosphère

angle de la trace de la FT: \(\tan \theta \propto \frac{v_i}{V_S} \)
Partie II: Résultats et applications aux domaines océaniques
Partie II: Résultats et applications aux domaines océaniques

\[\tan(\theta) \]

\[\frac{v_i}{v_s} \]

⇒ pb:
pb: offset en âge à la FT non pris en compte
- application à la lithosphère océanique?
- application à la lithosphère océanique?
✓ volcanisme: *Sleep* (2002)

Strasbourg, 22 Mai 2008
Partie II: Résultats et applications aux domaines océaniques

- application à la lithosphère océanique?
✓ volcanisme: Sleep (2002)
- application à la lithosphère océanique?

✓ volcanisme: *Sleep* (2002)

âges de mise en place < 50 Ma, proches FT, côté vieux ???
✓ extension de l’écoulement latéral («edge-driven»)
✓ extension de l’écoulement latéral («edge-driven»)
 - dépend de la taille de la boîte en y
Partie II: Résultats et applications aux domaines océaniques

✓ extension de l’écoulement latéral («edge-driven»)
 - dépend de la taille de la boîte en y
 - mais souvent écoulement «borné»
extension de l’écoulement latéral («edge-driven»)
- dépend de la taille de la boîte en y
- mais souvent écoulement «borné»
✓ extension de l’écoulement latéral («edge-driven»)
 - dépend de la taille de la boîte en y
 - mais souvent écoulement «borné»
 - si succession de FT dans le même sens
extension de l’écoulement latéral («edge-driven»)
- dépend de la taille de la boîte en y
- mais souvent écoulement «borné»
- si succession de FT dans le même sens
 ⇒ augmentation de l’angle
✓ extension de l’écoulement latéral («edge-driven»)

- dépend de la taille de la boîte en y

- mais souvent écoulement «borné»

- si succession de FT dans le même sens

⇒ augmentation de l’angle

Morency et al. (2005)
✓ extension de l’écoulement latéral («edge-driven»)
 - dépend de la taille de la boîte en y
 - mais souvent écoulement «borné»

- si succession de FT dans le même sens
 ⇒ augmentation de l’angle
 ⇒ impact sur l’anisotropie?

Morency et al. (2005)
anomalies de gravité

Hall et Gurnis (2005)
Partie II: Résultats et applications aux domaines océaniques

✓ anomalies de gravité

Hall et Gurnis (2005)
Partie II: Résultats et applications aux domaines océaniques

✓ anomalies de gravité

Hall et Gurnis (2005)

Marquesas Track 3

gravity (mGal)

48 My

62 My

Strasbourg, 22 Mai 2008
anomalies de gravité

Hall et Gurnis (2005)

Marquesas Track 3

48 My

62 My
Partie II: Résultats et applications aux domaines océaniques

✓ anomalies de gravité
Partie III: Rôle de la fusion partielle
Partie III: Rôle de la fusion partielle

• Modélisation de la fusion partielle
Partie III: Rôle de la fusion partielle

- Modélisation de la fusion partielle
 - paramérisation de Katz et al. (2003)
Partie III: Rôle de la fusion partielle

- Modélisation de la fusion partielle
• Modélisation de la fusion partielle
 - paramétrisation de Katz et al. (2003)

\[
F_{\text{cpx-out}} = \frac{M_{\text{cpx}}}{R_{\text{cpx}}(P)}
\]
Partie III: Rôle de la fusion partielle

- Modélisation de la fusion partielle
 - paramétrisation de *Katz et al. (2003)*

\[F_{\text{cpx-out}} = \frac{M_{\text{cpx}}}{R_{\text{cpx}}(P)} \]

Fusion anhydre

fraction modale en cpx initiale

Disparition du cpx
• Modélisation de la fusion partielle
 - paramétrisation de Katz et al. (2003)

\[
F_{\text{cpx-out}} = \frac{M_{\text{cpx}}}{R_{\text{cpx}(P)}},
\]

on néglige l’impact sur F de l’épuisement de la phase Al

Strasbourg, 22 Mai 2008
Partie III: Rôle de la fusion partielle

- Modélisation de la fusion partielle
 - paramétrisation de Katz et al. (2003)

\[F_{\text{cpx-out}} = \frac{M_{\text{cpx}}}{R_{\text{cpx}(P)}} \]

fraction modale en cpx initiale

on néglige l’impact sur F de l’épuisement de la phase Al

on ne considère pas le liquidus de l’hartzburgite car F trop faible

disparition du cpx
Partie III: Rôle de la fusion partielle

- Modélisation de la fusion partielle
 - paramétrisation de Katz et al. (2003)
• Modélisation de la fusion partielle
 - paramétrisation de Katz et al. (2003)

fusion hydratée
Partie III: Rôle de la fusion partielle

- Modélisation de la fusion partielle
 - paramétrisation de Katz et al. (2003)

\[X_{H_2O} = \frac{X_{H_2O}^{bulk}}{D_{H_2O} + F(1 - D_{H_2O})} \]

% d’eau dans le liquide

Strasbourg, 22 Mai 2008
• Modélisation de la fusion partielle
 - paramétrisation de Katz et al. (2003)

\[
X_{H_2O} = \frac{X_{H_2O}^{bulk}}{D_{H_2O} + F(1 - D_{H_2O})}
\]

\(\Rightarrow F(P, T, X_{H_2O})\)
- extraction du liquide: formation de croûte
(porosité maximale: 2%)
- extraction du liquide: formation de croûte (porosité maximale: 2%)

- fraction modale initiale de cpx: 17%, contenu en eau de la péridotite initiale: 0,125%
Partie III: Rôle de la fusion partielle

- extraction du liquide: formation de croûte (porosité maximale: 2%)

- fraction modale initiale de cpx: 17%, contenu en eau de la péridotite initiale: 0,125%

- chaleur latente de fusion
Partie III: Rôle de la fusion partielle

- extraction du liquide: formation de croûte
 (porosité maximale: 2%)

- fraction modale initiale de cpx: 17%,
 contenu en eau de la péridotite initiale: 0,125%

- chaleur latente de fusion

- hypothèse: c’est la quantité de liquide dans la matrice
 solide qui joue sur les propriétés physiques et non sa
 composition chimique
• Rôle sur la viscosité

Partie III: Rôle de la fusion partielle

• Rôle sur la densité
Partie III: Rôle de la fusion partielle

• Rôle sur la densité

- diminution de la densité en fonction de la quantité de liquide: $-\Delta \rho \phi$
- Rôle sur la densité

- diminution de la densité en fonction de la quantité de liquide: \(-\Delta \rho \cdot \phi\)

- diminution de la densité du résidu car oxyde de Fe (incompatible) plus lourd qu’oxyde de Mg (réfractaire)
• Rôle sur la densité

- diminution de la densité en fonction de la quantité de liquide: $-\Delta \rho \phi$

- diminution de la densité du résidu car oxyde de Fe (incompatible) plus lourd qu’oxyde de Mg (réfractaire)

et phase alumineuse plus lourde (>30km)
• Rôle sur la densité

 - diminution de la densité en fonction de la quantité de liquide: \(-\Delta \rho \cdot \phi\)

 - diminution de la densité du résidu car oxyde de Fe (incompatible) plus lourd qu’oxyde de Mg (réfractaire)

 et phase alumineuse plus lourde (>30km)

 \(-\left(\frac{\Delta \rho_{depl}}{\rho_0}\right)\xi\)
Partie III: Rôle de la fusion partielle

• Résultats sans changement de la viscosité et de la densité

Strasbourg, 22 Mai 2008
Partie III: Rôle de la fusion partielle

- Résultats sans changement de la viscosité et de la densité
Partie III: Rôle de la fusion partielle
Partie III: Rôle de la fusion partielle

Strasbourg, 22 Mai 2008
épaisseur de croûte
Conclusions

- démarrage de la convection petite échelle inchangé

- structure thermique de la lithosphère perturbée près des FT: «edge-driven» convection
 ⇒ variation d’épaisseur lithosphérique dissociée de la zone transformante en surface: impacts sur les observables?

- introduction de la fusion partielle ⇒ ?