Seismic stimulation for enhanced oil production

Eirik G. Flekkøy, University of Oslo

Mihailo Jankov, Olav Aursjø, Henning Knutsen, Grunde Løvold and Knut Jørgen Måløy, *UiO* Renaud Toussaint, *University of Strasbourg* Steve Pride, *Lawrence Berkeley Labs*

Outline

- Field observations
- Pore scale intro and elements of theory
- Lattice Boltzmann and experiments
- Moving up from pore scale: Network models and experiments
- Transversal versus longitudinal stimulation
- Effects of compressibility

FIELD EVIDENCE FOR SEISMIC STIMULATION

Earthquakes or hammers, as in this case:

Water extraction wells:

Context:

As much as 70% of the world's oil is in known reservoirs but is trapped on capillary barriers and is effectively "*stuck*".

Seismic Stimulation:

A seismic wave is to "*shake the stuck oil loose*" and get it flowing again toward a production well.

Before Seismic Wave oil (light grey) is stuck

During Seismic Wave oil is mobilized and oil bubbles coalesce

The production-gradient force that always acts on the fluids:

$$F_0 = \Delta P / H$$

Poroelasticity determines the seismic force acting on the fluids:

$$F_{S} = c_{p} \left(\rho_{f} + \frac{\rho B}{1 + 4G/3K_{U}} \right)^{\bullet} \theta$$

"acceleration of grains" "wavelength-scale
fluid-pressure gradient"
where θ is the seismic strain rate.

The seismic force adds to the production gradient and can overcome the capillary barrier whenever:

"stimulation criterion"

where

$$S = \frac{F_0 k}{\phi^2 \sigma}$$
$$S_c = \frac{\sqrt{k}}{\phi H}$$

dimensionless "*stimulation number*" (a type of capillary number)

"critical threshold of *stimulation number"* (purely geometry dependent)

and where k is permeability and ϕ is porosity.

Lattice Boltzmann model

Hydrodynamics comes from mass- and momentum conservation:

G. McNamara and G. Zanetti 1986

Lattice-Boltzmann Movie

NOTES

•No green arrow = no applied forcing •Single green arrow = production-gradient only •Double green arrow = two periods of seismic stress + production-gradient

"when stimulation is applied, bubbles coalesce creating a longer stream of oil that flows even in absence of stimulation'

0

Snapshots and average oil speed during the four stages of a typical "production run":

Total volume of oil production with (solid symbols) and without (open symbols) three cycles of stimulation applied

Less of a stimulation effect because at 33% saturation, oil cannot form a continuous stream across system.

More of a stimulation effect because at 50% saturation, coalescence can result in oil forming a continuous stream across system

A tiny experiment:

Randomly placed Ø 2 mm cylinders

Lattice Boltzmann and experiments

Towards larger scales:

Experiments:

- Random monolayer of 1 mm glassbeads between plates
- $\sim 180 imes 110$ pores system size

- System parameters:
 - Porosity $\phi = 0.62$
 - Permeability $\kappa = 1.7 \times 10^{-7} \text{ cm}^{-2}$
 - All invasion experiments done at: Ca = 4.3 × 10⁻⁴

Displacement structures depend on velocity and viscosities and gravity:

- Viscous contrast: $M = \frac{\mu_{nw}}{\mu_w}$
- Capillary number: $Ca = \frac{\mu v a^2}{\gamma \kappa}$ (for $M \simeq 0$)
- Flow regimes: M > 1 and high Ca $M \ll 1 \text{ and low } Ca$ $M \ll 1 \text{ and high } Ca$

Experimental setup:

- Model on light box
- Shaking done with DC motor
- Acceleration measured with acceleration sensor

Experiment movie- no oscillations

With parallel oscillations: (Ca=0.0004)

Corresponding network simulations:

00000001 -- 0.0002s

00000001 -- 0.0002s

...and with transverse oscillations:

00000001 -- 0.0002s

00000001 - 0.0001 s

The different frequencies and accelerations:

No oscillations

Parallel osc:

Transverse osc:

no oscillation

0.25 g, 5 Hz vertical

1.0 g, 10 Hz vertical

0.25 g, 5 Hz horizontal

1.0 g, 10 Hz horizontal

Lattice Boltzmann

transverse oscillations

Resulting, end saturations of wetting fluid:

An experiment with compressibility:

vertical cross-section of the model

Q=const.

Linear elastic response of both air and local plate displacements may model fluid compressibility under much higher pressures.

Phase diagram

Conclusions

- Transverse stimulation more efficient than parallel stimulation, at least for high fractions of invading fluid
- Smaller scale coalescence potentially more efficient at smaller volume fractions
- Compressibility gives skin-depth
- Simplified (network) and 2D simulations (Lattice Boltzmann) capture experiments
- Quantification, analysis and scaling laws still lacking