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‘ Outline

= Fleld observations
= Pore scale intro and elements of theory
= Laftice Boltzmann and experiments

= Moving up from pore scale: Network models
and experiments

= Transversal versus longitudinal stimulation
» Effects of compressibility




FIELD EVIDENCE FOR SEISMIC

STIMULATION
= Earthquakes or hammers, as in this case:
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= INncrease in Oil Production after Stimulation
at Occidental’s Elk Hills Field, California
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‘ Water extraction wells:

Figure 1
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}Context:

As much as 70% of the
world’s oil Is in known
reservoirs but is trapped
on capillary barriers and Is
effectively “stuck”.

Seismic Stimulation:
A seismic wave IS to
“shake the stuck oil loose”
and get it flowing again
toward a production well.
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The condition for a stuck oil bubble:

AP =0 L
R

Rdown up

“the production
pressure drop along
the bubble is just
balanced by a
capillary-pressure
Increase”

Production Gradient AP/H

Beresnev et al., 2005




’The production-gradient force that always
acts on the fluids:

F, =AP/H

Poroelasticity determines the seismic
force acting on the fluids:

B °
Fs=cC,| p; P 0
1+4G/3K
f \
“acceleration of grains”  “wavelength-scale
fluid-pressure gradient”

where @ is the seismic strain rate.




hhe seismic force adds to the production gradient
and can overcome the capillary barrier whenever:
Fs v 3
Fo S

“stimulation criterion”

where

FO K dimensionless “stimulation number”
o (atype of capillary number)

.= ﬂ “critical threshold of stimulation number”
# H  (purely geometry dependent)

S —

S

and where k is permeability and ¢ is porosity.




Lattice Boltzmann model

= Hydrodynamics comes from mass- and
momentum conservation:
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G. McNamara and G. Zanetti 1986



| attice-Boltzmann Movie
NOTES

*NO green arrow =
no applied forcing
Single green arrow =
production-gradient only
*Double green arrow =
two periods of seismic stress
+ production-gradient

“when stimulation is applied,
bubbles coalesce creating a
longer stream of oil that flows
even In absence of stimulation”




Snapshots and average oil speed during the
four stages of a typical “production run”:

e 1 T T —
BE f -
L : 4
4L | w ‘ - .
! | running
S 1 average
E.]Z-
Aot
.E m- 1
B B - LV 1
- 0 5000 10000 15000

e

direction of flow lime




Total volume of oil production with (solid symbols) and

without (open symbols) t
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Less of a stimulation
effect because at 33%
saturation, oil cannot
form a continuous
stream across system.

More of a stimulation
effect because at 50%
saturation, coalescence
can result in oil
forming a continuous
stream across system




A tiny experiment:

e Well defined system of size ~ 10 x 10 pores
e Milled channel: 30 x 30 x 1 mm milled channel

e Randomly placed @ 2 mm cylinders



‘ Lattice Boltzmann and experiments
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' Towards larger scales:




‘ Experiments:

e Random monolayer of 1 mm glassbeads between plates

e ~ 180 x 110 pores system size

contact paper

N air inlet

inlet chanel

N layer of beads

180 mm
to pump

e System parameters:
e Porosity ¢ = 0.62
o Permeability Kk = 1.7 x 10~ cm ™2
e All invasion experiments done at: Ca =4.3 x 10~4




Displacement structures depend on
velocity and viscosities and gravity:

e Viscous contrast: M = "“Lﬂ
"

o Capillary number: Ca = "{;’—:2 (for M ~ 0)

° Flow regimes:
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‘ Experimental setup:

e Model on light box
e Shaking done with DC motor

o Acceleration measured with acceleration sensor
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With parallel oscillations: (Ca=0.0004)

= a=0.8¢g
a=2.6 g







k simulations
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..and with transverse oscillations
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The different frequenc1es and

accelerations:

= No oscillations

= Parallel osc:

= [ransverse 0ScC:




Lattice Boltzmann

= Longitudinal and transverse oscillations
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Resulting, end saturations of wetting tluid:
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An experiment with compressibility:

vertical cross-section of the model

Q=const.

syringe pump

o

air pump

=

=

S 5

Pr Pa

pressure sensors



Linear elastic response of both air and
local plate displacements may model fluid
compressibility under much higher
pressures.




FElastic response gives finite skin-depth:
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Flow direction
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Phase diagram
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Closer look

Fragments

Coexistence of
both phases in
pore spaces-
foam




‘ Conclusions

= Transverse stimulation more efficient than parallel

stimulation, at least for high fractions of invading
fluid

= Smaller scale coalescence potentially more efficient
at smaller volume fractions

= Compressibility gives skin-depth
= Simplified (network) and 2D simulations (Lattice
Boltzmann) capture experiments

= Quantification, analysis and scaling laws still lacking




