

Studying Antarctica from a magnetic point of view

Luis R. Gaya-Piqué Équipe de Géomagnétisme - IPGP

Ecole et Observatoire des Sciences de la Terre

March 29th, 2007

Importance of crustal fields
 Magnetic observatories
 Main field studies
 Crustal field compilations
 Regional surveys

Coldest: -89°C at Vostok Highest: average elevation 2,500 meters Windlest: 375 km/h at Dumont D'Urville **Driest:** average precipitation < 50 mm/year Iciest: 4,776 meters deep in Wilkes-Land

Crustal Magnetic Field

CP²

Structure and dynamic evolution of the mid-ocean ridge system and oceanic crust

Geological and tectonic studies of the continental crust

Magnetic monitoring of geological hazards (active faults, volcanoes)

Integration of magnetic anomaly data with gravity, seismic, geochemical, remote sensing, geological, and heat flow data

König and Jokat, JGR, 2006

Fox-Maule et al., Science, 2005

Antarctic Digital Magnetic Anomaly Project Near-surface survey coverage

Components of the Magnetic Field

Constituent Field	Location of Source	Mean Intensity (Maximum)	
Main	Outer core	50,000 nT (70,000 nT)	
Local	Crust (upper mantle?)	100 nT (10⁵ nT)	
Regular Storm	Magnetosphere	150 nT (500 nT)	
Irregular storm	lonosphere and magnetosphere	100 nT (200 nT)	
Diurnal Variation	Ionosphere	50 nT (200 nT)	
Induced	Crust, upper mantle, and oceans	½ of above three fields	

How to combine all these surveys?

... sometimes it does not work

Ravat et al., The Leading Edge, 2003

12 An improved main field reference model for Antarctica is needed

Antarctic Observatory Data

Spatial Distribution

Temporal Distribution

Annual means from the WDC for Geomagnetism in Edinburgh, march 2007

Variometer

GEOMAG SM90R Overhauser magnetometer at the center of a pair of dual axis Helmholtz coils (BGS)
Minute values, recording continuously since December 1996

Absolute Measurements

- Elsec 810A D/I-fluxgate on a Zeiss 015B amagnetic theodolite
- Null-field procedure
- Elsec 820A proton precession magnetometer for F
- Observations limited to Austral summer

Magnetic Satellite Missions

Satellite	Date	Altitude (km)	Inclination	Local Time	Instrumentation
0G0-2	Oct 1965 to Sep 1967	413 - 1510	87°	All local times	Rubidium (scalar)
0G0-4	Jul 1967 to Jan 1969	412 - 908	86°	All local times	Rubidium (scalar)
OGO-6	Jun 1969 to Jul 1971	3 <mark>97 - 1</mark> 098	82°	All local times	Rubidium (scalar)
Magsat	Nov 1979 to May 1980	325 -550	97°	06:00 / 18:00	Fluxgate (vector) and Cesium (scalar)
Ørsted	Feb 1999 to present	620 – 850	96°	All local times	Fluxgate (vector) and Overhauser (scalar)
Champ	Jul 2000 to present	300 – 460	87°	All local times	Fluxgate (vector) and Overhauser (scalar)

Quiet-time Satellite Data over Antarctica

Geomagnetic potential over the Sphere SPHERICAL HARMONIC ANALYSIS

Spherical Harmonic analysis of the Earth's magnetic field by means of Legendre Polynomials and Fourier series.

Geomagnetic potential over a Spherical Cap SPHERICAL CAP HARMONIC ANALYSIS

Regionalization of the global model for spherical cap by means of non integer Legendre polynomials and Fourier series

SPHERICAL HARMONIC ANALYSIS

$$\nabla^2 V = 0 \qquad V_i(r,\theta,\phi) = a \sum_{n=1}^{\infty} \sum_{m=0}^{n} \left(\frac{a}{r}\right)^{n+1} \left\{g_n^m \cos m\phi + h_n^m \sin m\phi\right\} P_n^m(\cos\theta)$$
$$X \equiv -B_\theta = \frac{1}{r} \frac{\partial V}{\partial \theta} \qquad Y \equiv B_\phi = \left(-\frac{1}{r\sin\theta}\right) \frac{\partial V}{\partial \phi} \qquad Z \equiv -B_r = \frac{\partial V}{\partial r}$$

SPHERICAL CAP HARMONIC ANALYSIS

$$V(r,\theta,\phi,t) = a \sum_{k=0}^{K} \sum_{m=0}^{k} \left(\frac{a}{r}\right)^{n_{k}(m)+1} P_{n_{k}}^{m}(\cos\theta) \cdot \sum_{l=0}^{L} (g_{k,l}^{m} \cos m\phi + h_{k,l}^{m} \sin m\phi) \cdot t^{l}$$

K, L: maximum index and degree of spatial and temporal expansions

 $g_{k,l}^{m}$, $h_{k,l}^{m}$: coefficients of the model

 $P_{n_k(m)}^m(\cos \theta)$: associated Legendre functions of integral order *m* but usually nonintegral degree $n_k(m)$, determined to satisfy alternatively the following boundary conditions:

$$\frac{dP_{n_k(m)}^m(\cos\theta)}{d\theta}\bigg|_{\theta=\theta_0} = 0, \ k-m = even$$

 $P_{n_k(m)}^m(\cos\theta_0) = 0, \ k - m = odd$

Fit to Observatory Data

Model	X	Y	z	F
ARM	678	612	1359	1399
IGRF-9	694	600	1372	1411
CM4 _{internal}	690	611	1365	1403

Fit to Satellite Data

Model	0G0-2	0G0-4	OGO-6	Magsat	Champ	Ørsted
ARM	22.9	13.4	11.4	13.2	9.8	9.4
IGRF-9	21.9	21.7	22.5	14.7	19.0	19.7
CM4 _{internal}	16.6	22.3	22.2	21.4	24.8	24.5
CM4 _{int+ext}	6.3	5.8	5.3	3.7	4.6	3.3

Model	RMS F (nT)
IGRF-9	53.0
CM4	51.1
ARM	12.7

Mean Secular Variation (nT/year)		
Real	-107.1	
IGRF-9	-97.5	
CM4	-102.6	
ARM	-108.9	

Altitude 50 km , grid interval 50 km Amplitude range \pm 300 nT

SCHA-Modeling of ADMAP

GEOIMAG survey 2003/2004 campaign

- 1. To characterize from a magnetic point of view the Northern part of the Terror Rift (Ross Island, Erebus volcano, and associated volcanic structures)
- 2. To develop a high-resolution aeromagnetic survey over the McMurdo Sound related to the ANDRILL international project

INGV AIRBORNE GEOPHYSICAL EQUIPMENT

Optically pumped Cesium Magnetometer AGIS acquisition system: Magnetic Field data + GPS + laser altimeter + Pilot Guidance Unit + video recording system Also: DGPS + magnetometric base station + radar altimeter

Aerodinamical bird (left) containing the cesium magnetometer (right)

AGIS acquisition system

High-altitude surveys over Ross Island and McMurdo Sound

Twin Otter aircraft, 30 hours, 1500 - 5000 m

High-resolution, low-altitude survey over McMurdo Sound

Squirrel helicopter, 22 hours, 100 m

The study of the crustal field at all scales:

- Local (observatories)
 - Regional (surveys)
- Continental (compilations)

constitutes a powerful tool to improve our knowledge of the geology and tectonic history of our planet