Rotational Ground Motions: A New Observable for Seismology?

H. Igel ${ }^{1}$, A. Cochard ${ }^{1,4}$, A. Flaws ${ }^{1,2}$, W. Suryanto ${ }^{1}$, B. Schuberth ${ }^{1}$, U. Schreiber ${ }^{3}$, Pham Dinh Nguyen1, A. Velikoseltsev ${ }^{3}$
${ }^{1}$ Department of Earth and Environmental Sciences, LMU Munich ${ }^{2}$ Department of Physics and Astronomy, Christchurch, New Zealand ${ }^{3}$ Fundamentalstation Wettzell, Kötzting
${ }^{4}$ EOST Strasbourg

- What is rotation in seismology? (Why bother?)
- The ring laser instrument
- Broadband observations of rotations
- Peak rotation rates
- Waveform comparison with translations
- Horizontal phase velocities
- Love wave dispersion
- P -coda
- Array-derived vs. directly measured rotations
- Conclusions and future
ringlaser.geophysik. uni-muenchen. de

Rotation is the curl of the wavefield

... it separates P - and S -wave in isotropic media

Rotation from seismic arrays?

... by finite differencing ...

Radiation from a double-couple point source

FIGURE 5 Cartesian and polar coordinate systems for analysis of radiation by a slip patch with area A and average slip $\langle\Delta u(t)\rangle$.

Geometry we use to express the seismic wavefield radiated by point doublecouple source with area A and slip Δu

Here the fault plane is the $x_{1} x_{2}$-plane and the slip is in $x_{1}-$ direction.

Radiation from a point source

Near field term contains the static deformation

Intermediate terms

Far field terms: the main ingredient for source inversion, ray theory, etc.

Aki and Richards (2002)

Radiation pattern

$$
\begin{aligned}
& \boldsymbol{A}^{N}=9 \sin 2 \theta \cos \phi \hat{\boldsymbol{r}}-6(\cos 2 \theta \cos \phi \hat{\boldsymbol{\theta}}-\cos \theta \sin \phi \hat{\boldsymbol{\phi}}), \\
& \boldsymbol{A}^{I P}=4 \sin 2 \theta \cos \phi \hat{\boldsymbol{r}}-2(\cos 2 \theta \cos \phi \hat{\boldsymbol{\theta}}-\cos \theta \sin \phi \hat{\boldsymbol{\phi}}), \\
& \boldsymbol{A}^{I S}=-3 \sin 2 \theta \cos \phi \hat{\boldsymbol{r}}+3(\cos 2 \theta \cos \phi \hat{\boldsymbol{\theta}}-\cos \theta \sin \phi \hat{\boldsymbol{\phi}}), \\
& \boldsymbol{A}^{F P}=\sin 2 \theta \cos \phi \hat{\boldsymbol{r}}, \\
& \boldsymbol{A}^{F S}=\cos 2 \theta \cos \phi \hat{\boldsymbol{\theta}}-\cos \theta \sin \phi \hat{\boldsymbol{\phi}},
\end{aligned}
$$

Far field P - blue Far field S - red

Aki and Richards (2002)

The rotational part

$$
\begin{aligned}
\boldsymbol{\omega}(\mathbf{x}, t) & =\frac{1}{2} \nabla \times \mathbf{u}(\mathbf{x}, t) \\
& =\frac{-\mathbf{A}^{R}}{8 \pi \rho}\left[\frac{3}{\beta^{2} r^{3}} M_{0}\left(t-\frac{r}{\beta}\right)+\frac{3}{\beta^{3} r^{2}} \dot{M}_{0}\left(t-\frac{r}{\beta}\right)+\frac{1}{\beta^{4} r} \ddot{M}_{0}\left(t-\frac{r}{\beta}\right)\right]
\end{aligned}
$$

$$
\mathbf{A}^{R}=\cos \theta \sin \phi \hat{\boldsymbol{\theta}}+\cos \phi \cos 2 \theta \hat{\boldsymbol{\phi}}
$$

- Rotations are zero before S arrival
- This includes the near field!
- Far-field P-rotation is not zero! Only the sum of all contributions cance!!

Cochard et al. (2006)

Basic seismograms, full space

$$
\begin{aligned}
& \boldsymbol{u}(\boldsymbol{x}, t)=\frac{1}{4 \pi \rho} \boldsymbol{A}^{N} \frac{1}{r^{4}} \int_{r / v_{P}}^{r / v_{S}} \tau M_{0}(t-\tau) d \tau \\
& +\frac{1}{4 \pi \rho v_{P}^{2}} A^{I P} \frac{1}{r^{2}} M_{0}\left(t-r / v_{P}\right) \\
& +\frac{1}{4 \pi \rho v_{S}^{2}} A^{I S} \frac{1}{r^{2}} M_{0}\left(t-r / v_{S}\right) \\
& +\frac{1}{4 \pi \rho v_{P}^{3}} A^{F P} \frac{1}{r} \dot{M}_{0}\left(t-r / v_{P}\right) \\
& +\frac{1}{4 \pi \rho v_{S}^{3}} A^{F S} \frac{1}{r} \dot{M}_{0}\left(t-r / v_{S}\right) . \\
& \text {... in the far field ... } \\
& \ddot{u}^{F S}=\frac{1}{4 \pi \rho v_{s}^{3} r} \dddot{M}_{0}\left(t-r / v_{s}\right) \\
& \varpi^{F}=-\frac{1}{8 \pi \rho v_{s}^{4} r} \dddot{M}_{0}\left(t-r / v_{s}\right) \\
& \frac{\ddot{u}^{F S}}{\ddot{\varpi}^{F}}=-2 v_{s}
\end{aligned}
$$

Rotations - why bother?

- Standard seismological observations are polluted by rotations
- Tiltmeters (rotation around horizontal axes) are polluted by translations
- Rotations may contribute to co-seismic structural damage

Instruments

Earthquake engineering

- Rotational measurements my provide additional wavefield information (phase velocities, etc)
- ... and may allow further constraints on rupture

$A+R$'s view ...

> "The state-of-the-art sensitivity of the general rotation-sensor is not yet enough for a useful geophysical application" (Aki and Richards, Quantitative Seismology, 1980)
> note the utility of measuring rotation near a rupturing fault plane (...), but as of this writing seismology still awaits a suitable instrument for making such measurements" (Aki and
> Richards, Quantitative
> Seismology, 2nd edition 2002)

Previous studies

Schreiber, Stedman, and co-workers

Ring laser technology New Zealand and Germany

Takeo and co-workers
Gyroscopic rotation sensor, theoretical work

Nigbor and co-workers
rotational sensor and observation of rotational motion of nuclear blast

Teisseyre and co-workers
mechanical rotational sensor and observation of local events

it seems that only optical technology provides the required high resolution for (tele-)seismic measurements

The ring laser at Wettzell

Fundamentalstation Wettzell

How can we observe rotations?
 -> ring laser

Ring laser technology developed by the groups at the Technical University Munich and the University of Christchurch, NZ

The Sagnac Frequency

 (schematically)Sagnac frequency sampled with 800 Hz

Rotation rate sampled with 4 Hz
Tiny changes in the Sagnac frequencies are extracted to obtain the time series with rotation rate $\Delta f \rightarrow \Theta$

Ring laser - the principle

A surface of the ring laser (vector)
Ω imposed rotation rate (Earth's rotation + earthquake +...)
λ laser wavelength (e.g. 633 nm)
Pperimeter (e.g. 4-16m)
Δf Sagnac frequency (e.g. $287,3 \mathrm{~Hz}$ sampled at 800 Hz)

Ring laser - resolution

$$
\Delta f_{\text {Sagnac }}=\frac{4 \Omega \cdot \mathbf{A}}{\lambda P}
$$

Area m^{2}	$\mathrm{f}_{\text {Segnce }}(\mathrm{Hz})$	Resolution $\mathrm{rad} / \mathrm{s}$
1	79.4	4.810^{-10}
16	338.6	
3.10^{-11}		
366	1512.8	7.310^{-12}

After Schreiber et al., 2002
... ring lasers are used in any commercial airplanes for stabilizing ...

Effects of tilt on rotational measurements

... before presenting observations ...

- ... the ring laser should be sensitive to SH type motion only (S waves, Love waves) ...
- ... P-waves (or Rayleigh waves) should no \dagger lead to a signal (except via tilt coupling) ...
- ... Rotation rate and transverse acceleration should be in phase ...
- ... their amplitude ratio should be twice the local phase velocity - assuming plane non-dispersive transversely polarized wave propagation ...

Theoretical relation rotation rate and transverse acceleration plane-wave propagation

Plane transversely polarized wave propagating in x-direction with phase velocity

$$
u_{y}(x, t)=f(k x-\omega t) \quad c=\omega / k
$$

Acceleration

$$
a_{y}(x, t)=\ddot{u}_{y}(x, t)=\omega^{2} f^{\prime \prime}(k x-\omega t)
$$

Rotation rate

$$
\Omega(x, t)=\frac{1}{2} \nabla \times\left[0, \dot{u}_{y}, 0\right]=\left[0,-\frac{1}{2} k \omega f^{\prime \prime}(k x-\omega t), 0\right]
$$

$$
a(x, t) / \Omega(x, t)=-2 c
$$

Rotation rate and acceleration should be in phase and the amplitudes scaled by two times the horizontal phase velocity

Data base 2003 + 2004

Date	Time (UTC)	Lat $\left({ }^{\circ}\right)$	Lon $\left({ }^{\circ}\right)$	Mag(L, $, \mathbf{b}, \mathbf{S}, \mathbf{w})$	Region
$21 / 05 / 03$	$18: 44: 20$	36.964	003.634	6.9	Algeria
$26 / 05 / 03$	$09: 24: 33$	38.849	141.568	7.0	Honshu
$06 / 07 / 03$	$19: 10: 33$	40.340	026.070	5.7	Turkey
$14 / 08 / 03$	$05: 14: 55$	39.193	020.741	6.3	Greece
$25 / 09 / 03$	$19: 50: 06$	41.781	143.903	8.3	Hokkaido
$27 / 09 / 03$	$11: 33: 24$	50.012	087.824	7.5	Siberia
$27 / 09 / 03$	$18: 52: 53$	50.060	087.690	6.6	Siberia
$01 / 10 / 03$	$01: 03: 25$	50.218	087.685	7.1	Siberia
$08 / 10 / 03$	$09: 07: 01$	42.480	144.820	6.7	Hokkaido
$31 / 10 / 03$	$01: 06: 40$	37.890	142.680	7.0	Honshu
$17 / 11 / 03$	$06: 43: 31$	51.140	177.860	7.8	Rat Island
$26 / 12 / 03$	$01: 56: 58$	29.100	058.240	6.8	Iran
$05 / 02 / 04$	$21: 05: 12$	-03.620	135.530	7.1	Irian Jaya
$07 / 02 / 04$	$02: 42: 43$	-04.030	134.780	7.5	Irian Java
$24 / 02 / 04$	$02: 27: 53$	35.290	-003.840	6.4	Gibraltar
$17 / 03 / 04$	$03: 21: 12$	-21.100	-065.560	6.1	Bolivia
$05 / 04 / 04$	$21: 24: 06$	36.590	070.850	6.6	Afghanistan
$28 / 05 / 04$	$12: 38: 50$	36.520	051.810	6.4	Iran
$29 / 05 / 04$	$20: 56: 14$	34.220	141.790	6.6	Honshu
$05 / 12 / 04$	$01: 52: 37$	48.120	008.080	5.0	Germany
$26 / 12 / 04$	$00: 58: 53$	03.300	095.980	9.0	Sumatra

4C recordings - raw data

$\mathrm{Mw}=8.3$ Tokachi-oki earthquake 25.09.2003 19:50:38.2 GMT Lat= 42.21 Lon= 143.84

Compatibility with MS (surface wave magnitude) $\mathrm{T}=30 \mathrm{~s}, \mathrm{c}=4300 \mathrm{~m} / \mathrm{s}$

$$
M_{S}=\log _{10} \frac{A}{T}+1.66 \log _{10} D+3.3
$$

$$
\Omega_{z}=2 \frac{\pi^{2}}{c T^{2}} A\left(M_{S}, D\right)=2 \frac{\pi^{2}}{c T} 10^{M_{s}-1.66 \log _{10} D-9.3}
$$

Rotational data base

 events with varying distance transverse acceleration - rotation rate

$M w=8.3$ Tokachi-oki 25.09.2003 transverse acceleration-rotation rate

From Igel et al., GRL, 2005

Max. cross-corr. coefficient in sliding time window transverse acceleration - rotation rate

Small tele-seismic event

Spectral element modeling of 3D global wave propagation

Cubed Sphere Chunk Partitioning

Tromp and Komatitsch, 2003

M8.3 Tokachi-oki, 25 September 2003

 phase velocities (+ observations, o theory)

Horizontal phase velocity in sliding time window

From Igel et al. (GRL, 2005)

Real vs. Synthetics: Papua event

Cochard et al., 2006

$M w=8.3$ Tokachi-oki 25.09.2003 transverse acceleration - rotation rate narrow band-pass filtering

$M w=6.3$ Greece 14.08.2003 transverse acceleration - rotation rate narrow band-pass filtering

(s)
 dominant period increasing

Rotational seismograms Synthetics and Observations

M8.3 Hokkaido, 25 September 2003 (recorded in Wettzell, Germany)

Phase velocity determination

... by dividing accelerations by rotation rates in a sliding window ...
... point measurement!

Note the decreasing velocities with time (and increasing frequency)

Phase velocity determination

... by dividing accelerations by rotation rates in a sliding window ...
... point measurement!

Restitute your broadband seismograms! transverse acceleration - rotation rate

Before restitution

Restitute your broadband seismograms! transverse acceleration - rotation rate

After restitution

... an independent confirmation of the quality of the restitution processing ...

Phase velocity determination
 ... by calculating spectral ratios ...

Stacked spectral ratios

 ... accurate enough for structural inversion ...?

Direction of propagation of transversely polarized energy

Estimated BAZ: 64°; Theoretical BAZ: 59°

Max. cross-corr. coeff. as a function of time and propagation direction

Direction of propagation of transversely polarized energy

Estimated BAZ: 118°; Theoretical BAZ: 128°

Max. cross-corr. coeff. as a function of time and propagation direction

Rotational signals in the P-coda???

Array measurements

Dec 2003-Mar 2004

A quick-and-dirty experiment

Before restitution

Uniformity of rotation rate across array

Effects of noise on array-derived rotation: Phase uncertainty

First comparison of array-derived rotations (black) and direct ring laser measurements (red)

From Suryanto et al (2005, BSSA, submitted)

Summary seismic ground rotations

- Yes, we do have a new observable for broadband seismology, that is consistent in phase and amplitude with collocated recordings of translations
- The joint observations allow seismic array-type processing steps (but array-free!)
- A prototype sensor designed for seismology has been installed at Pinon Flat, CA
- A less sensitive (portable) sensor for near source studies and applications in earthquake engineering is planned.

Next steps:

- Further comparison with array observations (phase velocities)
- Love-wave dispersion, how accurate? -> Tomography?
- Understanding observations in data base in terms of structure, anisotropy, source, etc.

Only 160€!

Info and (p)reprints:
ringlaser.geophysik.uni-muenchen.de

