

Rotational Ground Motions: A New Observable for Seismology?

H. Igel¹, A. Cochard^{1,4}, A. Flaws^{1,2}, W. Suryanto¹, B. Schuberth¹, U. Schreiber³, Pham Dinh Nguyen1, A. Velikoseltsev³

¹Department of Earth and Environmental Sciences, LMU Munich ²Department of Physics and Astronomy, Christchurch, New Zealand ³Fundamentalstation Wettzell, Kötzting

⁴EOST Strasbourg

- What is *rotation* in seismology? (Why bother?)
- The ring laser instrument
- Broadband observations of rotations
 - Peak rotation rates
 - Waveform comparison with translations
 - Horizontal phase velocities
 - Love wave dispersion
 - P-coda
- Array-derived vs. directly measured rotations
- Conclusions and future

ringlaser.geophysik.uni-muenchen.de

Rotation is the curl of the wavefield

... it separates P- and S-wave in isotropic media

Rotation from seismic arrays?

Radiation from a double-couple point source

FIGURE 5 Cartesian and polar coordinate systems for analysis of radiation by a slip patch with area A and average slip $\langle \Delta u(t) \rangle$.

Geometry we use to express the seismic wavefield radiated by point doublecouple source with area A and slip Δu

Here the fault plane is the x_1x_2 -plane and the slip is in x_1 direction.

Radiation pattern

$$\begin{aligned} A^{N} &= 9\sin 2\theta \cos \phi \hat{r} - 6(\cos 2\theta \cos \phi \hat{\theta} - \cos \theta \sin \phi \hat{\phi}), \\ A^{IP} &= 4\sin 2\theta \cos \phi \hat{r} - 2(\cos 2\theta \cos \phi \hat{\theta} - \cos \theta \sin \phi \hat{\phi}), \\ A^{IS} &= -3\sin 2\theta \cos \phi \hat{r} + 3(\cos 2\theta \cos \phi \hat{\theta} - \cos \theta \sin \phi \hat{\phi}), \\ A^{FP} &= \sin 2\theta \cos \phi \hat{r}, \\ A^{FS} &= \cos 2\theta \cos \phi \hat{\theta} - \cos \theta \sin \phi \hat{\phi}, \end{aligned}$$

Far field P - blue Far field S - red

Aki and Richards (2002)

$$\begin{aligned}
\mathbf{v}(\mathbf{x},t) &= \frac{1}{2} \nabla \times \mathbf{u}(\mathbf{x},t) \\
&= \frac{-\mathbf{A}^R}{8\pi\rho} \left[\frac{3}{\beta^2 r^3} M_0 \left(t - \frac{r}{\beta} \right) + \frac{3}{\beta^3 r^2} \dot{M}_0 \left(t - \frac{r}{\beta} \right) + \frac{1}{\beta^4 r} \ddot{M}_0 \left(t - \frac{r}{\beta} \right) \right]
\end{aligned}$$

$$\mathbf{A}^{R} = \cos\theta\,\sin\phi\,\hat{\boldsymbol{\theta}} + \cos\phi\,\cos2\theta\,\hat{\boldsymbol{\phi}}$$

- Rotations are zero before S arrival
- This includes the near field!

The rotational part

1

• Far-field P-rotation is not zero! Only the sum of all contributions cancel!

Cochard et al. (2006)

Basic seismograms, full space

$$u(\mathbf{x}, t) = \frac{1}{4\pi\rho} A^{N} \frac{1}{r^{4}} \int_{r/v_{F}}^{r/v_{F}} \tau M_{0}(t-\tau) d\tau$$

$$+ \frac{1}{4\pi\rho v_{F}^{2}} A^{IF} \frac{1}{r^{2}} M_{0}(t-r/v_{F})$$

$$+ \frac{1}{4\pi\rho v_{S}^{2}} A^{IS} \frac{1}{r^{2}} M_{0}(t-r/v_{S})$$

$$+ \frac{1}{4\pi\rho v_{S}^{3}} A^{FF} \frac{1}{r} \dot{M}_{0}(t-r/v_{S})$$

$$+ \frac{1}{4\pi\rho v_{S}^{3}} A^{FF} \frac{1}{r} \dot{M}_{0}(t-r/v_{S})$$

$$= \frac{1}{2\nabla \times u(\mathbf{x}, t)}$$

$$= \frac{1}{2\nabla$$

Rotations - why bother?

- Standard seismological observations are polluted by rotations
- Tiltmeters (rotation around horizontal axes) are polluted by translations
- Rotations may contribute to co-seismic structural damage

Rotational measurements my provide additional wavefield information (phase velocities, etc) ... and may allow further constraints on rupture processes ... Instruments

Earthquake engineering

> Waves and rupture

"The state-of-the-art sensitivity of the general rotation-sensor is not yet enough for a useful geophysical application" (Aki and Richards, Quantitative Seismology, 1980)

"... note the utility of measuring rotation near a rupturing fault plane (...), but as of this writing seismology still awaits a suitable instrument for making such measurements" (Aki and Richards, Quantitative Seismology, 2nd edition 2002)

Previous studies

Schreiber, Stedman, and co-workers Ring laser technology New Zealand and Germany

Takeo and co-workers

Gyroscopic rotation sensor, theoretical work

Nigbor and co-workers

rotational sensor and observation of rotational motion of nuclear blast

Teisseyre and co-workers

mechanical rotational sensor and observation of local events

it seems that only optical technology provides the required high resolution for (tele-)seismic measurements

The ring laser at Wettzell

How can we observe rotations? -> ring laser

ater combined

- A surface of the ring laser (vector)
- Ω imposed rotation rate (Earth's rotation + earthquake +...)
- λ laser wavelength (e.g. 633 nm) Pperimeter (e.g. 4-16m)
- ∆f Sagnac frequency (e.g. 287,3 Hz sampled at 800Hz)

Δf_{Sagnac}	=	$4\mathbf{\Omega} \cdot \mathbf{A}$
		λP

Area m ²	f _{Sagnac} (Hz)	Resolution rad/s
1	79.4	4.8 10-10
16	348.6	9.1 10-11
366	1512.8	7.3 10-12

After Schreiber et al., 2002

... ring lasers are used in any commercial airplanes for stabilizing ...

Effects of tilt on rotational measurements

... before presenting observations ...

- ... the ring laser should be sensitive to SH type motion only (S waves, Love waves) ...
- ... P-waves (or Rayleigh waves) should not lead to a signal (except via tilt coupling) ...
- ... Rotation rate and transverse acceleration should be in phase ...
- ... their amplitude ratio should be twice the local phase velocity – assuming plane non-dispersive transversely polarized wave propagation ...

Theoretical relation rotation rate and transverse acceleration plane-wave propagation

Plane transversely polarized wave propagating in x-direction with phase velocity

$$u_y(x,t) = f(kx - \omega t)$$
 $c = \omega / k$

Acceleration

$$a_{y}(x,t) = \ddot{u}_{y}(x,t) = \omega^{2} f''(kx - \omega t)$$

Rotation rate

$$\Omega(x,t) = \frac{1}{2} \nabla \times [0, \dot{u}_y, 0] = [0, -\frac{1}{2} k \omega f''(kx - \omega t), 0]$$

Rotation rate and acceleration should be in phase and the amplitudes scaled by two times the horizontal phase velocity

Data base 2003 + 2004

Date	Time (UTC)	Lat(°)	Lon (°)	Mag(L,b,S,w)	Region
21/05/03	18:44:20	36.964	003.634	6.9	Algeria
26/05/03	09:24:33	38.849	141.568	7.0	Honshu
06/07/03	19:10:33	40.340	026.070	5.7	Turkey
14/08/03	05:14:55	39.193	020.741	6.3	Greece
25/09/03	19:50:06	41.781	143.903	8.3	Hokkaido
27/09/03	11:33:24	50.012	087.824	7.5	Siberia
27/09/03	18:52:53	50.060	087.690	6.6	Siberia
01/10/03	01:03:25	50.218	087.685	7.1	Siberia
08/10/03	09:07:01	42.480	144.820	6.7	Hokkaido
31/10/03	01:06:40	37.890	142.680	7.0	Honshu
17/11/03	06:43:31	51.140	177.860	7.8	Rat Island
26/12/03	01:56:58	29.100	058.240	6.8	Iran
05/02/04	21:05:12	-03.620	135.530	7.1	Irian Jaya
07/02/04	02:42:43	-04.030	134.780	7.5	Irian Jaya
24/02/04	02:27:53	35.290	-003.840	6.4	Gibraltar
17/03/04	03:21:12	-21.100	-065.560	6.1	Bolivia
05/04/04	21:24:06	36.590	070.850	6.6	Afghanistan
28/05/04	12:38:50	36.520	051.810	6.4	Iran
29/05/04	20:56:14	34.220	141.790	6.6	Honshu
05/12/04	01:52:37	48.120	008.080	5.0	Germany
26/12/04	00:58:53	03.300	095.980	9.0	Sumatra

combined

Mw = 8.3 Tokachi-oki 25.09.2003 transverse acceleration - rotation rate

From Igel et al., GRL, 2005

Max. cross-corr. coefficient in sliding time window transverse acceleration - rotation rate

aser light fo n is leaked a

Spectral element modeling of 3D global wave propagation

Cubed Sphere

Chunk Partitioning

100GByte Memory 60 hours on the Bundeshöchstleistungsrechner

Tromp and Komatitsch, 2003

Real vs. Synthetics : Papua event

Cochard et al., 2006

dominant period ncreasing

ater combined

Mw = 6.3 Greece 14.08.2003 transverse acceleration - rotation rate narrow band-pass filtering

dominant period (s) ncreasing

the laser light bean is leake ater combined

Rotational seismograms Synthetics and Observations M8.3 Hokkaido, 25 September 2003 (recorded in Wettzell, Germany)

Phase velocity determination

... by dividing accelerations by rotation rates in a sliding window ...

Note the decreasing velocities with time (and increasing frequency)

Phase velocity determination

... by dividing accelerations by rotation rates in a sliding window ...

... point measurement!

he laser light baon is leake ster combined

Restitute your broadband seismograms! transverse acceleration - rotation rate

Before restitution

Restitute your broadband seismograms! transverse acceleration - rotation rate

After restitution

... an independent confirmation of the quality of the restitution processing ...

he laser light boom is leake

Stacked spectral ratios accurate enough for structural inversion ...?

Direction of propagation of transversely polarized energy

Max. cross-corr. coeff. as a function of time and propagation direction

ombined

Direction of propagation of transversely polarized energy

Max. cross-corr. coeff. as a function of time and propagation direction

ter combined

Rotational signals in the P-coda???

ter combined

Array measurements Dec 2003-Mar 2004

A quick-and-dirty experiment

he laser light becan is leaker

ater combined

Uniformity of rotation rate across array

Effects of noise on array-derived rotation: Phase uncertainty

he laser hat

ater combined.

From Suryanto et al (2005, BSSA, submitted)

ter combined

Summary seismic ground rotations

- **Yes**, we do have a new observable for broadband seismology, that is consistent in phase and amplitude with collocated recordings of translations
- The joint observations allow seismic array-type processing steps (but array-free!)
- A prototype sensor designed for seismology has been installed at Pinon Flat, CA
- A less sensitive (portable) sensor for near source studies and applications in earthquake engineering is planned.

Next steps:

- Further comparison with array observations (phase velocities)
- Love-wave dispersion, how accurate? -> Tomography?
- Understanding observations in data base in terms of structure, anisotropy, source, etc.

Roman Teisseyre Minoru Takeo Eugeniusz Majewski Editors

Earthquake Source Asymmetry, Structural Media and Rotation Effects

Springer

Only 160€!

ringlaser.geophysik.uni-muenchen.de