Numerical modeling of gravitational flows on Earth and on Mars

Anne Mangeney University Paris-Diderot Seismology Team, IPGP

INLS, University California San Diego, CA

Automation of

Sector States

Numerical modeling of avalanches and landslides

Motivation

- Understanding erosion processes at the earth surface and on telluric planets
- Risk assessment
- Precursors of volcanic activity?

Wide variety of geophysical granular flows: avalanches, landslides, debris flows...

Several sources (earthquakes, precipitation, volcanism...), various scale, composition

Avalanche dynamics: Field scale to laborary scale

• Physics and mechanics of granular flows in laboratory

• Physics and mechanics of **natural flows** ?

Very complex flows Few **data**: essentially on the **deposit** Simplified systems Velocity and thickness measurements

Emplacement conditions

Same physical processes ?

Nathalie Thomas, IUSTI

Numerical simulation, Lucas, Mangeney, Bouchut

From morphometric observations to emplacement dynamics

• The levee/channel morphology of self-channelling flows on the Earth, on Mars ...

How does it form ?

DiRojentityateniim?

Numerical modelling of dry granular flows

over complex topography?

Thin Layer Approximation

Friction force : from grain to averaged media behavior

Constitutive relation at the **local** scale : existence and formulation ?

↓

Continuum equations for granular flows **are not well established**

Empirical relation deduced from experiments

Simulation of laboratory experiments

Pirulli, Bristeau, Mangeney, Scavia [2006]

Mangeney, Vilotte, Bristeau, Perthame et al. [2003]

Simulation of self-channeling flows

Relation between dynamics and deposits

Scaling laws for mean velocity u_f and thickness h_f

$$w_{f} = \left(\frac{h_{f}}{h_{stop}}\right)^{-5/2}, \quad u_{f} = \gamma h_{f}^{3/2}$$

Measurement of w_{c} and h_{c} first order estimation of the dynamics (h_{f}, u_{f})

Limits of the thin layer approximation

Shaltop-2d well match dry granular collapse in the laboratory if a < 1which is generally the case for natural landslides !

static friction angle

Summary of the experiment simulation

• Simulations with **friction angle ~ typical friction angle for the granular material** roughly reproduce:

- mean behavior of the flow
- mean shape of the deposit
- some morphological structures

What about natural avalanches?

Simulation of natural gravitational flows

• Operational codes : Six des Eaux Froides landslide Switzerland, 1946 [*Pirulli and Mangeney*, 2006] t = 70 s friction angle $\delta = 17^{\circ}$

Good news: The calculated deposit area well match the observations

• Ophir Chasma, Valles Marineris, Mars [Lucas and Mangeney, 2007]

Prediction?

- Small friction angles δ compared to typical of natural materials! $\theta_r \sim 35^{\circ}$ $\mu = \tan \delta$: empirical description of the mean dissipation
- Quite bad news : High variability of adjusted friction angle for natural flows

Landslide	Volume	Basal friction angle
Fei Tsui landslide, Hong-Kong, 1995	$V = 1.4 \times 10^4 \mathrm{m}^3$	$\delta = 26^{\circ}$
Shum Wan landslide, Hong-Kong, 1995	$V = 2.6 \times 10^4 \mathrm{m}^3$	$\delta = 18^{\circ}$
Six des Eaux Froides, Switzerland, 1946	$V = 5 \times 10^6 \mathrm{m}^3$	$\delta = 17^{\circ}$
Frank, Canada, 1903	$V = 3 \times 10^7 \mathrm{m}^3$	$\delta = 14^{\circ}$
Boxing Day, Montserrat, 1997	$V = 5 \times 10^7 \mathrm{m}^3$	$\delta = 15^{\circ}$
Ophir Chasma, Valles Marineris, Mars	$V = 5 \times 10^{12} \mathrm{m}^3$	$\delta = 9.8^{\circ}$
Candor Chasma, Valles Marineris, Mars	$V = 2.3 \times 10^{11} \mathrm{m}^3$	$\delta = 9.9^{\circ}$
Ganges Chasma, Valles Marineris, Mars	$V = 1 \times 10^{12} \mathrm{m}^3$	$\delta = 9.4^{\circ}$

Useful tool for risk assessment using calibration on past events in the same context!

Mobility of experimental and natural flows

Very low friction => mechanical behavior of Topography leftettects

Martian landslides = Experimental dry granular flows

How to define the mobility of gravitational flows?

A new mobility...

New mobility vs. initial aspect ratio is relevant !

An "intrinsic" Mobility

$$m'_{e}=f'(\delta,)=1/(\text{mean dissipation})$$

New mobility : survey at the field scale

A few landslides in Valles Marineris

Geomorphic survey using Imagery (THEMIS, HRSC, MOC, HiRISE) and Topography (MOLA, HRSC)

Using this "measured" friction angle, what about 3D deposit??!

Tab 1 – Mobility *m*'e and angle of friction δ calculated for a few landslides on Mars.

3D Numerical simulation of Martian Landslides

Predictive power of actual empirical models

Laboratory experiments on granular flows

Glass beads d = 0.5 mm Initial thickness $h_0 = 42 d$ Inclination angle $\phi = 23^{\circ}$ [Pouliquen and Forterre, 2002]

Simulation using thin-layer model

Decelerating avalanche with deposit

 $h_i = h_s$: thickness of the deposit for granular flow over a rigid bed

Surge wave

The partial fluidization theory

• Main fundamental problem:

constitutive relation valid for flowing and static grains

• The partial fluidization model faces the challenge: [Aranson and Tsimring, 2002]

 σ_{ij} ???

• Well known theory of phase transition (Ginzburg-Landau equation)

Numerical modeling : from decelerating avalanches to surge waves

• 2D numerical simulation

[Mangeney et al., 2007]

Impact of erosion on avalanche mobility

Data on the dynamics ??!

Dynamic properties of natural gravitational flows ?

Initial conditions.

An extreme case...

Simulation of the landslide

Friction angle $\delta = 30^{\circ}$

Simulation of the generated seismic waves

╢

Pascal Favreau

• Discharge and tangential stress

film_gliss_terrain_mars_force_25t.mpeg

• Discharge and normal stress

Favreau, Mangeney, Lucas,...

Coprates Chasma, Valles Marineris, Mars

Synthetic waveforms from normal (red) and tangential (blue) forces

Conclusion

- More **physics** in the models: fluid/solid mixture model, erosion/deposition ...
- More data on the dynamics : **seismology**
- Detailed analysis of the **deposit morphology** in various contexts