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Why the Earth’s moon ?

The only extraterrestrial body for which we have:
— Samples
— Seismic data
— Rock magnetic data

— LLR (k2/dissipation/rotational dynamics)
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Does the Moon posses a liquid core ?

Evidence of aliquid layer in the deep moon structure:
Partialy molten mantle versus Liquid core...

« Absence of farside deep
moonquakes. (Melt/Core)
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Does the Moon posses a liquid core ?

Evidence of a liquid layer in the deep moon structure:
Partialy molten mantle versus Liquid core...

Absence of farside deep
moonquakes. (Melt/Core)

Tidal dissipation from LLR(Melt/
Core)

Remanent rock magnetism. (Early
moon dynamo->Core)

Moment of Inertia (Core)
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The two models of internal structure:

Khan et al. 2004, 2013,

Williams et al 2001, Nimo et al. 2012 I. de Viries et al. 2010




« Remanent rock magnetism. (Early
moon dynamo->Core)

* Moment of Inertia (Core)
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The two models of internal structure:

Khan et al. 2004, 2013,

Williams et al 2001, Nimo et al. 2012 1. de Viries et al. 2010

Partial Melt Region
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The LLR observations.




Partial Melt Region
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The LLR observations.
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The dissipation from LLR observations

Lunar Laser Ranging (LLR) A gravitational torque acting on the

0(t) moon will and
. Both effects
@ combine into time dependent r0,rl,..
ri(t) measured by LLR.
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The dissipation from LLR observations

Lunar Laser Ranging (LLR) A gravitational torque acting on the

moon will and

. Both effects
combine into time dependent r0,r1,..
ri(t) measured by LLR.

ro(t)

Applied torque

1/O“zl/clﬁdal + 1/(lcore

Anelasticity of

Viscous friction
the mantle

at the CMB

Observed response | =
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Anelasticity of
the mantle

Viscous friction
at the CMB

Observed response
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In the absence of dissipation, the spin vector of the moon would remain in the Cassini plane.
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Yoder 1981
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Precession of the lunar mantle exhibit -264 mas
phase lag between the mantle rotation axis compare

to the Cassini plane. Yoder 1981:

If the dissipation is entirely due to solid
friction:
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Precession of the lunar mantle exhibit -264 mas
phase lag between the mantle rotation axis compare

to the Cassini plane. Yoder 1981:

If the dissipation is entirely due to solid
friction:

l\')
Ap = —223—=
@,

1%

k2~0.02 - Q™35 are obtain from
observations at 1month period. Assuming
(k2, Q) for a silicate mantle do not vary
significantly in the long period range
[Imonth-20years]

Q~2<<Q =35
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A simple model of Lunar Core
dynamics.




significantly in the long period range
[Imonth-20years)

Q~2<<Q=235
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A simple model of Lunar Core
dynamics.
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Viscous boundary Layer

: v
0 = \/6 < lm

* Boundary layer instability
* Roughness

Quasi-inviscid interior
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Viscous boundary Layer

. v
= \/6 < 1m

* Boundary layer instability
* Roughness

Quasi-inviscid interior

* Centrifugal instability
* Inertial parametric instability
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Precession driven flows
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Precession driven flows

recession
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Precession driven flows

(). = core rotation rate
(1,, = mantle rotation rate
1, = precession rate

AQ =0 — Q. =dif ferential rotation
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Precession driven flows

(). = core rotation rate
(., = mantle rotation rate
(), = precession rate

). = dif ferential rotation
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Precession driven primary flow.

Poincaré 1910:

A first order the flow remains in quasi
8 Rotati‘ solid body rotation along an axis that is
\ tilted compare to the surrounding solid

shell
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Precession driven primary flow.

Poincaré 1910:

A first order the flow remains in quasi
solid body rotation along an axis that is
tilted compare to the surrounding solid
shell

UC- — Sz(f X T+ V-‘(‘J'I?

recession
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Uniform vorticity assumption

In a steady state the direction and amplitude of the
rotation vector of the liquid is fully determined by the

balance between the gyroscopic, pressure and
viscous torque (Busse 1968, Noir et al. 2003):

U.=Q,.xr+ Vi
Necessary to satisfy the non
penetration condition:

Uc'fl;:()
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Uniform vorticity assumption

In a steady state the direction and amplitude of the
rotation vector of the liquid is fully determined by the

balance between the gyroscopic, pressure and
viscous torque (Busse 1968, Noir et al. 2003):

U.=Q,.xr+ Vi
Necessary to satisfy the non
penetration condition:

U. - n=0

Fl’rc c X SZP X SZm
].—‘]) X j(ASZ
[', o« KAQ
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Precession driven flows

At first order the fluid rotates around an axis different from the mantle spin axis

The uniform vorticity theory:

* Sphere/Spheroid (Earth): Poincare 1910,
Busse 1968, Noir et al. 2003.

« Triaxial ellipsoid (Moon): Noir and Cebron
2013,




Tpox f.AQ
T, o KAQ
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Precession driven flows

At first order the fluid rotates around an axis different from the mantle spin axis

Sphere / Spheroid The uniform vorticity theory:

‘ = ,F" | * Sphere/Spheroid (Earth): Poincare 1910,
Busse 1968, Noir et al. 2003.

« Triaxial ellipsoid (Moon): Noir and Cebron
2013,

The core mostly rotates around the normal

UC = . xr+ Vu to the ecliptic, neither the viscosity nor the

Necessary to satisfy the non ellipticity are large enough to force the core
penetration condition: to rotate synchronously with the mantle.

(Yoder 1981, Williams et al. 2001...)
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Precession driven flows

At first order the fluid rotates around an axis different from the mantle spin axis

The uniform vorticity theory:

* Sphere/Spheroid (Earth): Poincare 1910,
Busse 1968, Noir et al. 2003.

« Triaxial ellipsoid (Moon): Noir and Cebron
2013.




Ue c
Necessary to satisfy the non
penetration condition:

ellipticity are large enough to force the core
to rotate synchronously with the mantle.
(Yoder 1981, Williams et al. 2001...)
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Precession driven flows

At first order the fluid rotates around an axis different from the mantle spin axis

The uniform vorticity theory:

Sphere/Spheroid (Earth): Poincare 1910,
Busse 1968, Noir et al. 2003.

Triaxial ellipsoid (Moon): Noir and Cebron
2013,

The core mostly rotates around the normal
to the ecliptic, neither the viscosity nor the
ellipticity are large enough to force the core
to rotate synchronously with the mantle.
(Yoder 1981, Williams et al. 2001...)
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Precession driven secondary flows

Rotation axis of the fluid

u =8 xr+ Vi+ou

l-l'l‘-.ll_ - ”33& '
V... =-0.321 }

dV =0.005




ellipticity are large enough to force the core
to rotate synchronously with the mantle.
(Yoder 1981, Williams et al. 2001...)
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Precession driven secondary flows

Rotation axis of the fluid

u= 8. xr+ Vi +ou

0.388 |
0321 |
0.005

Due to the viscosity in the
boundary layer, there exists a
secondary flow spawn from the
critical latitudes along conical
surfaces.

Roberts and Stewartson 1963
Noir et al. 2001
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Can the differential rotation account for
the observed dissipation ?




critical latitudes along conical
surfaces.

Roberts and Stewartson 1963
Noir et al. 2001

The Lunar liquid Core: Brittary or Bahamas 17

Can the differential rotation account for
the observed dissipation ?
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Estimated dissipation from LLR measurements

Mantle
T Core

Yoder 1981

I. vsinl.5°
0.260" = 1.3 XS 20

I—m 142
l.p

YT AQL,
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Estimated dissipation from LLR measurements

Mantle
Core

Yoder 1981

I. vsinl.5°
0.260° = 1.3 A St

I —m 1+ y2
s l.p
YT AL,

[, ~2x 10" Nm
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Estimated dissipation from LLR measurements

Mantle

Core

For small precession rate, as
for the moon, the
differential rotation vector
lies in the equatorial plane

P=Ty(Qm+AQ)~ T, AQ Ue = xr




I', ~2x 10 Nm
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Estimated dissipation from LLR measurements

Mantle
Core

For small precession rate, as
for the moon, the
differential rotation vector
lies in the equatorial plane

P:ru(ﬂm+AQ)NFuAQ UC:Q"Xr

The Lunar liquid Core: Brittary or Bahamas

The classical core dissipation models

Mantle

Classical Core flow models for the Core
dissipation:

Assume spherical shape

Assume the fluid to be in solid body

rotation along an axis tilted compare

to the mantle (Poincaré 1910)

The viscous torque at the CMB

( dissipation) is given by:

T, = K(Qm — Q)
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The classical core dissipation models

Mantle
Classical Core flow models for the T Core
dissipation:
« Assume spherical shape
* Assume the fluid to be in solid body

rotation along an axis tilted compare

to the mantle (Poincaré 1910)
* The viscous torque at the CMB

( dissipation) is given by:

', = K(Q,, — Q)

Laminar coupling

K o (I.(
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The classical core dissipation models

Precession of the lunar mantle exhibit -264 mas

phase lag between the mantle rotation axis compare

to the Cassini plane, which can not be explain with

realistic model of mantle tidal dissipation (Williams

2001)
Assuming a large fraction of the
dissipation at 18.6yr comes from the
liguid core and a simple model of
dissipation at the CMB with a laminar
coupling:

-7 2 - — 6 2 -
107 "m?s ' < v <107 %m s

R ~ 900km (williams et al. 2001)
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The classical core dissipation models

Precession of the lunar mantle exhibit -264 mas

phase lag between the mantle rotation axis compare

to the Cassini plane, which can not be explain with

realistic model of mantle tidal dissipation (Williams

2001)
Assuming a large fraction of the
dissipation at 18.6yr comes from the
liquid core and a simple model of
dissipation at the CMB with a laminar
coupling:

-T 2 — - — 2
107 "m%s™ ' < v <107 %m s

~J

R ~ 900km (williams et al. 2001)

R~ 400km (Yoder 1981)

‘)

v 2107 *m?.s ! ~ 10%p,
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The turbulent core dissipation models

\ET(E
Classical Core flow models for the T Core
dissipation:

Assume spherical shape

Assume the fluid to be in solid body

rotation along an axis tilted compare

to the mantle (Poincaré 1910)

The viscous torque at the CMB

( dissipation) is given by:

Ty = K(Qm — Q)
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“m?.s !~ 10%vp,
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The turbulent core dissipation models

Mantle
Classical Core flow models for the T Core
dissipation:

Assume spherical shape

Assume the fluid to be in solid body

rotation along an axis tilted compare

to the mantle (Poincaré 1910)

The viscous torque at the CMB

( dissipation) is given by:

T, = K(Qn — Q)

Laminar coupling Turbulent coupling

K o (ICS‘ZC')\-""'E K oc (1.52,) Q

Independent of viscosity
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The turbulent core dissipation models

Precession of the lunar mantle exhibit -264 mas

phase lag between the mantle rotation axis compare

to the Cassini plane, which can not be explain with

realistic model of mantle tidal dissipation (Williams

2001)
Assuming a large fraction of the
dissipation at 18.6yr comes from the
liquid core and a simple model of
dissipation at the CMB with a
coupling:

R ~ 400km

-~ "7 9 — v — ‘) -
107"m*.s ! <v <10 %m*.s~!




K (L Qa)V E K (L.Sl(-)i—!

Independent of viscosity
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The turbulent core dissipation models

Precession of the lunar mantle exhibit -264 mas

phase lag between the mantle rotation axis compare

to the Cassini plane, which can not be explain with

realistic model of mantle tidal dissipation (Williams

2001)
Assuming a large fraction of the
dissipation at 18.6yr comes from the
liquid core and a simple model of
dissipation at the CMB with a
coupling:

R ~ 400km

N ‘ . - - Y )
107"m*s ' <v <10 %m=.s

(Williams et al. 2001, Yoder 1981)

Yoder 1981
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Can turbulence be driven in the Lunar Core ?
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Yoder 1981
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Can turbulence be driven in the Lunar Core ?

Ekman Layer stability

At first order the fluid rotates around an axis different from the mantle spin axis

Is the Ekman boundary layer stable ?

Qe — Q| R\/Z

Re = L~ 10%

/

The large Re-value suggests that the thin viscous
boundary laver could be unstable. There is o




Ekman Layer stability

At first order the fluid rotates around an axis different from the mantle spin axis

Is the Ekman boundary layer stable ?

_ 19— QulRVE

/

Re ~ 10*

The large Re-value suggests that the thin viscous
boundary layer could be unstable. There is no
theory at the moment that let us predict how
much dissipation it can generate. One may expect

the small volume of the Ekman layer to limit this
effect.

The Lunar liquid Core: Brittary or Bahamas

Conical shear layer stability

u=N. xr+Vy+ou

Roberts and Stewartson 1963

Su x AQEY®

ou ~ 1.5m/13.5days
0 ~ 1.5km




e small volume of the Ekman layer to imit this
effect.
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Conical shear layer stability
u=N. xr+Vy+ou

Roberts and Stewartson 1963

Su x AQEY®

ou ~ 1.5m/13.5days
0 ~ 1.5km

Re ~ 2 x 107
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Bulk instabilities in precessing
cavities.
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Bulk instabilities in precessing
cavities.
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Stability of Precession driven flows

* Inertial modes = Resonant modes of a rotating fluid cavity (Greenspan
1968)

* The solid body rotation induced by precession is certainly the simplest
inertial mode, also know as the Poincaré mode.

Background flow

wr Twrr =

mypxmpr =myg
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Stability of Precession driven flows

* Inertial modes = Resonant modes of a rotating fluid cavity (Greenspan
1968)

* The solid body rotation induced by precession is certainly the simplest
inertial mode, also know as the Poincaré mode.

Background flow

wr T wrr =
mypxmypr =1m
Free mode I I1 f Free mode
| ]
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Stability of Precession driven flows

The mechanisms underlying the instability of the Poincaré flow has been
derived by Kerswell in 1993.

WITHOUT PRECESSION WITH PRECESSION

j Both the shear and the
S elliptical distortion will
\ lead to instability in the
| system.

The critical conditions
for the onset of these
instabilities depends on
the tilt of the axis and
on the flattening.
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Stability of Precession driven flows

The mechanisms underlying the instability of the Poincaré flow has been
derived by Kerswell in 1993.

WITHOUT PRECESSION WITH PRECESSION

Both the shear and the
elliptical distortion will

e t — ,/"L‘\
- - \ . \ lead to instability in the
| / system.
| P

The critical conditions
for the onset of these
instabilities depends on
the tilt of the axis and
on the flattening.

Shear of the streamines
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Stability of Precession driven flows

More recently a third mechanism has been suggested Kida et al. in prep /
Lin and Noir, in prep




The Lunar liguid Core: Brittary or Bahamas

Stability of Precession driven flows

More recently a third mechanism has been suggested Kida et al. in prep /
Lin and Noir, in prep
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Stability of Precession driven flows in spheroids

Instability criteria: Inviscid growth rate > dissipation in the boundary layer

Hydrostatic
Non Hydrostatic

/ " Laminar dissipation

Inviscid growth rate
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Stability of Precession driven flows in spheroids

Instability criteria: Inviscid growth rate > dissipation in the boundary layer

Non Hydrostatic

.‘H‘
Bu
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o
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Laminar dissipation
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Stability of Precession driven flows in spheroids

Instability criteria: Inviscid growth rate > dissipation in the boundary layer

Hydrostatic
Non Hydrostatic

““Turbulent dissipati

viscid growth rate

In
Lo ]

— Laminar dissipation
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Stability of Precession driven flows in spheroids

Instability criteria: Inviscid growth rate > dissipation in the boundary layer

Hydrostatic
Non Hydrostatic

““Turbulent dissipa

Inviscid growth rate

" Laminar dissipation

Flattening
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Take away message

* The boundary layer and the conical shear layers may be unstable in the
Moon’s liquid core.

* Parametric instabilities, i.e. turbulence in the volume, may exist.

Although the dissipation models for turbulent flows are not well
established in rapidly rotating systems, it seems reasonable to speculate
that most of the observed dissipation can be buried in the liquid core of

the moon.




Flattening
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Take away message

* The boundary layer and the conical shear layers may be unstable in the
Moon'’s liquid core.

* Parametric instabilities, i.e. turbulence in the volume, may exist.

Although the dissipation models for turbulent flows are not well
established in rapidly rotating systems, it seems reasonable to speculate
that most of the observed dissipation can be buried in the liquid core of
the moon.
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