

Progrès récents en corrélation d'images : de la mesure de champs à l'identification de propriétés mécaniques

F. Hild, J. Réthoré & S. Roux

Séminaire IPGS 29/04/08

Needs for Identification

From experiments...

...to relevant mechanical properties E, v, K, D(Y), ...

- Well-designed and executed experiment(s)
- Accurate kinematic measurements
- Accurate 'static' measurements
- Direct numerical modeling
- Adapted identification strategies with well chosen observables
- Validation(s) of the result

Proposal for Identification

- Full-field kinematic measurements
 - Thousands of measurement points
 - Accuracy
 - Adjustable and versatile tool
- Identification procedure
 - Based on a consistent description
 - "Full-field" validation

Goal: From pictures to model

- Digital Image Correlation
 - General remarks
 - Some examples
- Identification
 - Elasticity / Static b.c.s
 - Cracks
 - Heterogeneous elastic properties
 - Damage law
 - Plastic buckling

Digital Image Correlation

- Two gray level images: $f(\underline{x}) = g(\underline{x})$
- Passive advection :
 - $g(\underline{x}) = f(\underline{x} + \underline{u}(\underline{x}))$
- Question: Identify $\underline{u}(\underline{x})$

Select a specific displacement basis $\underline{\varphi}_i(\underline{x})$ such that

$$\underline{u}(\underline{x}) = \sum_{i} a_{i} \underline{\varphi}_{i}(\underline{x})$$

• Weak formulation: Minimize $\Phi\{a_i\} = \iint \left[g(\underline{x}) - f(\underline{x} + a_i \underline{\varphi_i}(\underline{x}))\right]^2 d\underline{x}$ • Successive linearizations/corrections

$$M_{ij}a_j = b_i$$

- Which displacement basis?
 - The more closely tailored to the experimental test, the least number of parameters a_i to estimate, the more accurate the measurement
 - Examples:
 - elastic solutions
 - FE shape functions & extensions thereof
 - any other mechanically motivated fields

Uncertainty/Error

• Key ratio

 $\alpha = \frac{\# \operatorname{dof}}{\# \operatorname{pixels}}$

Small α :

- + A lot of information
- May not be rich enough to capture the real kinematics

Uncertainty
Fror

Uncertainty/Error

• Key ratio

$$\alpha = \frac{\# \operatorname{dof}}{\# \operatorname{pixels}}$$

Small *a*:

- + A lot of information
- May not be rich enough to capture the real kinematics

Uncertainty
Fror

Large α :

- Few information
- + Few restrictions

Uncertainty > Error >

• "Smart choice" of a (mechanically relevant) displacement basis

+ A lot of information

May not be rich
 enough to capture
 the real kinematics

Uncertainty 🖛 Error 🖛

Noise sensitivity analysis

- Effect of random (white) noise, η, on displacement estimates
- Covariance

$$Cov(a_i, a_j) = 2\langle \eta^2 \rangle (M^{-1})_{ij}$$

- →Selection of fields
- Uncertainty on further measurements

Noise sensitivity analysis

 $[M]{a} = {b}$ $\left\langle \{\delta a\} \{\delta a\}^t \right\rangle = 2\sigma^2 [M]^{-1}$

I-DIC (ℓ = 1000 pixels)

2.0

1 pixel \leftrightarrow 98 μ m

Elastic properties

Q4-DIC (ℓ = 16 pixels)

1 pixel \leftrightarrow 98 μm

Texture / Mechanical properties?

Texture / Mechanical properties

- Relationship between texture / mechanical properties?
- Identification of elastic parameters

1 pixel \leftrightarrow 130 µm

Toughness of ceramics

Q4-DIC (ℓ = 16 pixels)

XQ4-DIC (ℓ = 16 pixels)

1 pixel \leftrightarrow 1.85 μm

Toughness of ceramics

Q4-DIC (ℓ = 16 pixels)

XIQ4-DIC (ℓ = 16 pixels)

Toughness of ceramics

1 pixel \leftrightarrow 1.85 μm

Long distance microscope: 1 pixel \leftrightarrow 2.08 μm

Crack growth law

3D aspects of crack propagation?

1 voxel \leftrightarrow 13.5 μm

3D aspects of crack propagation

• F = 200 N

1 voxel \leftrightarrow 13.5 μm

3D aspects of crack propagation

• F = 400 N

1 voxel \leftrightarrow 13.5 μm

• F = 20 N

1 voxel \leftrightarrow 13.5 μm

3D aspects of crack propagation

1 voxel \leftrightarrow 13.5 μm

Analysis of local buckling?

1 pixel \leftrightarrow 300 μm

Analysis of local buckling

1 pixel \leftrightarrow 300 μm

Damage and fracture?

Damage and fracture

Q4-DIC (ℓ = 16 pixels)

XQ4-DIC (ℓ = 32 pixels)

Correlation residuals

1 pixel \leftrightarrow 68 µm

Damage and fracture

1 pixel \leftrightarrow 68 µm

Elastic parameters

• A suited framework: Kolossov-Muskhelichvili potentials in the complex plane *z*.

$$2\mu U(z) = \kappa \Phi(z) - z \Phi'(z) - \Psi(z)$$

with

$$\kappa = \frac{(3 - \nu)}{(1 + \nu)}$$

• Linear structure in $(1/\mu, \kappa/\mu)$

Elastic parameters

• Brazilian test

I-DIC (ℓ = 1000 pixels)

Field of elastic parameters

Finite element updating

- Initial parameters (tests on uncrimped mineral wool)
- FEA with measured BCs + auxiliary problems associated with elastic parameter changes
- Comparison between measured / computed displacement fields
 - Update elastic parameters (S_{nn}, S_{tt}, S_{nt}, S_{uu})

1 pixel \leftrightarrow 130 µm

Field of elastic parameters

Global relative displacement error: 3.1 %

Field of elastic parameters

Global relative displacement error: 2.3 %

SIF identification

Interaction integral

$$I^{\text{int}} = -\int_{\Omega} \left(\sigma_{ml}^{aux} u_{m,l} \delta_{kj} - \left(\sigma_{ij}^{aux} u_{i,k} + \sigma_{ij} u_{i,k}^{aux} \right) \right) q_{k,j \, dV}$$

• Auxiliary fields = Westergaard solution

$$I^{\text{int}} = \frac{2}{E} \left(K_I K_I^{aux} + K_{II} K_{II}^{aux} \right)$$

- Virtual crack extension
- $\underline{q} = \underline{0} \quad (edge)$ $\underline{q} = \underline{e}_1 \quad (crack \ tip)$ $\underline{q} \cdot \underline{n} = 0 \quad (crack \ face)$

Noise-robust interaction integral

Optimize the virtual crack extension field so that I^{int} has smallest sensitivity to noise

SIF measurement*

Horizontal displacement (pixel)

Vertical displacement (pixel)

*I-DIC (ℓ = 500 pixels)

1 pixel \leftrightarrow 1.85 µm

SIF measurement $\varphi_{\text{lin}}(\underline{x}) = \left| g(\underline{x}) - f(\underline{x}) + \underline{u}(\underline{x}) \cdot \nabla f(\underline{x}) \right|$

SIF measurement $\varphi_{\text{lin}}(\underline{x}) = \left| g(\underline{x}) - f(\underline{x}) + \underline{u}(\underline{x}) \cdot \nabla f(\underline{x}) \right|$

Equilibrium gap method

- Behavior: Incremental (linearized) problem $\underline{\dot{\sigma}} = \mathbf{C}(\underline{x}) : \underline{\dot{\mathcal{E}}}$
- Equilibrium

$$\operatorname{div}(\underline{\sigma}) + \underline{f} = 0$$

Basic formulation: find $\mathbf{C}(x)$ such that

$$\Omega = \iint_{D} \left\{ \operatorname{div}(\mathbf{C}(\underline{x}) : \underline{\nabla} \otimes \underline{u}) + \underline{f} \right\}^{2} d\underline{x}$$
Is minimized

Equilibrium gap method

- Difficulty: sensitivity to short wavelength fluctuations $\Omega = \iint_{D} \left\{ \operatorname{div}(\mathbf{C}(\underline{x}) : \underline{\nabla} \otimes \underline{u}) + \underline{f} \right\}^{2} d\underline{x}$
- Reconditioning: Solve for the displacement <u>v(x)</u> of a homogeneous elastic solid with body force g, and Dirichlet b.c.s

$$v = L_0^{-1}[g]$$

Equilibrium gap method

- Reconditioning:
 - find $C(\underline{x})$ such that

$$\Omega_{rec} = \iint_{D} \left\{ L_0^{-1} [\operatorname{div}(\mathbf{C}(\underline{x}) : \underline{\nabla} \otimes \underline{u}) + \underline{f}] \right\}^2 d\underline{x}$$

is minimized

Poisson's ratio identification

v = 0.31

Global relative displacement error: 12 %

1 pixel \leftrightarrow 68 μ m

Cachan

Young's modulus field

Measurement mesh: 66 x 66 elements Contrast mesh: 20 x 20 elements

1 pixel \leftrightarrow 68 μm

Young's modulus field

1 pixel \leftrightarrow 68 µm

LN^t

Cachan

Application to simple damage law

- Assume $\mathbf{C}(\underline{x}) = (1 \mathbf{D}(\varepsilon_{eq}(u_{meas}(\underline{x})))) \mathbf{C}_0$
- Unknown is a scalar function $D(\mathcal{E}_{eq})$
- 'Discretize' $D(\mathcal{E}_{eq}) = \sum_{i} c_i \Phi_i(\mathcal{E}_{eq})$
 - Use a poor man Laplace transform

$$\Phi_i(\boldsymbol{\varepsilon}_{eq}) = 1 - \exp(-\boldsymbol{\varepsilon}_{eq} / \boldsymbol{\varepsilon}_i)$$

Application to simple damage law

- Functional to minimize is **quadratic** in the unknowns $\{c_i\}$
- Computation cost: as many
 - homogeneous elastic problems as
 - (# unknowns)*(# exploited images)

1 pixel \leftrightarrow 68 µm

1 pixel \leftrightarrow 68 μ m

1 pixel \leftrightarrow 68 μm

Global relative displacement error: 5 %

1 pixel \leftrightarrow 68 μ m

Analysis of local buckling

			4	
-0.08	-0.06	-0.04	-0.02	0

• Beam-DIC (ℓ = 2048 pixels, h = 256 pixels)

1 pixel \leftrightarrow 300 µm

Analysis of local buckling

20

Future?

...

Conclusion

• A continuous pathway from images to constitutive laws is open:

"Digital Image Mechanical Identification" (DIMI) taking advantage of full field measurements

- Experiment
 - DIC control (e.g. SIF, crack advance monitoring)
 - Hybrid techniques (e.g., pseudo-dynamic tests)
 - New design of "smart" experiments
- DIC
 - Different imaging (e.g., AFM, stereo-correlation, movies)
 - Combination with other measurement techniques
- Identification
 - Other non-linear constitutive laws
 - 2D displacement fields / 3D numerical modelling
- Validation of constitutive laws and numerical tools

Example: SIF control

Control step

[Fayolle, 2007]

'All too often, experimental work in applied mechanics is thought of only as a check on existing theories or as a convenient substitute for analysis. This is a valid but rather inferior function of experiment. The greater and essential contribution is to guide the development of theory, by providing the fundamental basis for an understanding of the real world.'

D. Drucker (1967)

Progrès récents en corrélation d'images : de la mesure de champs à l'identification de propriétés mécaniques

F. Hild, J. Réthoré & S. Roux

