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This talk is about two things

• Trans-dimensional inverse problems 
Those with a variable number of unknowns

• The evidence
A quantity from probability theory that allows us to 

quantitatively compare independent studies performed by 
different researchers in different institutes at different 
times



4/31

Irregular grids in seismology

Debayle & Sambridge (2005)
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Self Adaptive seismic 
tomography

 Sambridge & Rawlinson (2005)
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Self Adaptive seismic 
tomography

From Sambridge & Faletic (2003)

Sambridge & Faletic (2002)
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Adaptive grids in seismic 
tomography

Generating optimized 
grids from resolution 
functions

Nolet & Montelli (2005)
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Spatially variable grids in 
tomography

The use of spatially variable parameterizations 
in seismic tomography is not new…. 

Some papers on `static’ and `dynamic’ parameterizations: 

Chou & Booker (1979); Tarantola & Nercessian (1984); 
Abers & Rocker (1991); Fukao et al. (1992); Zelt & Smith (1992); 
Michelini (1995); Vesnaver (1996); Curtis & Snieder (1997); 
Widiyantoro & can der Hilst (1998); Bijwaard et al. (1998); 
Bhm et al . (2000); Sambridge & Faletic (2003).

For a recent review see:

 
``Seismic Tomography with Irregular Meshes’’, Sambridge & Rawlinson
(Seismic Earth, AGU monograph Levander & Nolet, 2005.)
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What is a trans-dimensional 
inverse problem ?

“As we know, there are known 
knowns. There are things we know 
we know. We also know there are 
known unknowns. That is to say we 
know there are some things we do 
not know. But there are also 
unknown unknowns, the ones we 
don't know we don't know.”

Department of Defense news briefing, Feb. 12, 2002. 

When one of the things you don’t know is 
the number of things you don’t know

Donald Rumsfeld.
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How many variables required ?

Which curve produced that data ?
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How many parameters should I 
use to fit my data ?

How many components ? How many layers ?

This is a Trans-dimensional data fitting problem
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What is a trans-dimensional 
inverse problem ?
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=)(xm Earth model (that we want to 
recover)

=)(xBi Basis functions (that are chosen)

=iα Coefficients (unknowns)

=k The number of unknowns (unknown)

This is a hierarchical 
parametrization
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Probabilistic inference

),(),|(),|( HmpHmdpHdmp ×∝

Bayes’ rule

A posteriori probability density / Likelihood  x a priori probability 
density

All information is expressed in terms of probability density functions 

Conditional PDF

1702­1761

All additional 
assumptions 

are here



14/31

The evidence

The evidence )|( Hdp

Geophysicists have often overlooked it because it is not a 
function of the model parameters.  It measures the fit of the 
theory !

is also known as the marginal likelihood

)|(

)|(),|(
),|(

Hdp

HmpHmdp
Ηdmp =

Evidence

priorLikelihood
Posterior

×=

J. Skilling, however, describes it as the `single most important quantity 
in all of Bayesian inference’. This is because it is transferable quantity 
between independent studies.

If we all published evidence values of our model fit then studies 
could be quantitatively compared !

∫= dmHmpHmdpHdp )|(),|()|(
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Model choice and Occam’s razor
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1HSuppose we have two different theories      and

This tells us how well the data support each theory

2H

Occam’s razor suggests we should prefer the simpler theory 
which explains the data

Model predictions (Bayes factor)
or ratio of evidences

Prior 
preferences

Plausibility 
ratio

`A theory with mathematical beauty is more likely to 
be correct than an ugly one that fits the some 
experimental data’ – Paul Dirac
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112311911 23
1 ++−=+ iii xxx

Model choice: An example

41 +=+ ii xx

:2H

:1H

What are the next two numbers in the sequence ?

-1, 3, 7, 11, ?, ?

15, 
19

because  

-19.9, 
1043.8

because  

But what about the alternate theory ?
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Let us assume we have no prior preference 
for either theory )()( 21 HpHp =
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edxcxx iii ++=+
23

1

Model comparison: An example

axx ii +=+1

:2H

:1H

We must find the evidence ratio

See Mackay (2003)
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)|( 1Hdp
Is called the evidence for model 1 and is obtained by 
specifying the probability distribution each model assigns 
to its parameters

An arithmetic progression fits the data

A cubic sequence fits the data

(2 
parameters)

(4 
parameters)

If a and xo equally likely 

in range [-50,50] then
0001.0

101

1

101

1
)|( 1 ==Hdp

If c, d, and e have numerators in 
[-50,50] and denominators in [1,50]

12
2 105.2
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40 million to 1 in favour of the simpler 
theory !
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The natural parsimony of 
Bayesian Inference

From  Mackay (2003)

Without a prior preference expressed for the simpler model, 
Bayesian inference automatically favours the simpler theory 
with the fewer unknowns (provided it fits the data).

∫= dmHmpHmdpHdp )|(),|()|(

Bayesian Inference rewards 
models in proportion to how well 
they predict the data. Complex 
models are able to produce a 
broad range of predictions, 
while simple models have a 
narrower range. 

Evidence measures how well the theory fits the 
data

If both a simple and complex model fit the data then the simple 
model will predict the data more strongly in the overlap region
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Likelihood

Model more

complex Better

data fit

Natural parsimony of Bayesian Inference

Bayesian’s prefer simpler models

From Thermochronology study of Stephenson, Gallagher & Holmes (EPSL, 2006)



20/31

Trans-dimensional inverse 
problems

Consider an inverse problem with k unknowns
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kdp

kmpkmdp
kdmp =
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dp

kpkdp
dkp =

Bayes’ rule for the 
model parameters

Bayes’ rule for the  
number of 
parameters

By combining we get …

)(

)()|(),|(
)|,(

dp

kpkmpkmdp
dkmp =Bayes’ rule for both 

the parameters and 
the  number of 
parameters

Can we sample from trans-dimensional 
posteriors ?
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The reversible jump algorithm

A breakthrough was the reversible jump algorithm of Green(1995), 
which can simulate from arbitrary trans-dimensional PDFs.

)(

)()|(),|(
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dp

kpkmpkmdp
dkmp =This is effectively an extension to 

the well known Metropolis 
algorithm with acceptance 
probability

Jacobian      is often, but not always, 1. 
Automatic (Jacobian) implementation of 
Green (2003) is convenient.

Research focus is on efficient (automatic) 
implementations for higher dimensions.

Detailed balance

See Denision et al. (2002); Malinverno (2002), Sambridge et al. (2006)
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Trans-dimensional sampling

The reversible jump algorithm produces samples from the 
variable dimension posterior PDF. Hence the samples are 
models with different numbers of parameters

Standard 
Fixed dimension 

MCMC

Reversible jump
 MCMC

Posterior samples
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Trans-dimensional sampling:
A regression example

Standard point estimates give differing answers
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Reversible jump applied to the 
regression example

Use the reversible jump algorithm to sample from the trans-
dimensional prior and posterior

)(

)()|(),|(
)|,(

dp

kpkmpkmdp
dkmp =

For the regression problem k=1,…,4, and RJ-MCMC produces

1,1ay =

xaay 2,22,1 +=

2
3,33,23,1 xaxaay ++=

3
4,4

2
4,34,24,1 xaxaxaay +++=

State 1:

State 2:

State 3:

State 4:

ja )( 1,1 ),...,1( 1Nj =

jaa ),( 2,22,1 ),...,1( 2Nj =

jaaa ),,( 3,33,23,1 ),...,1( 3Nj =

jaaaa ),,,( 4,44,34,24,1 ),...,1( 4Nj =



25/31

Reversible jump results:
regression example

The reversible jump algorithm can be used to generate samples 
from the trans-dimensional prior and posterior PDFs. By tabulating 
the values of k we recover the prior and the posterior for k.

Simulation of the prior Simulation of the posterior

Linear is the winner ! 
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Trans-dimensional sampling from 
a fixed dimensional sampler

Can the reversible jump 
algorithm be replicated 
with more familiar fixed 
dimensional MCMC ?

From Sambridge et al. (2006)

Answer: Yes !

∑ ′
′′

= max
)()|(

)()|(
k

k

k
kpkdp

kpkdp
P

1. First generate fixed  
dimensional posteriors

2. Then combine them 
with weights kP

Only requires relative evidence values !
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Trans-dimensional sampling:
A mixture modelling example

How many Gaussian 
components ?

From Sambridge et al. (2006)
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Trans-dimensional sampling:
A mixture modelling example

Posterior simulation 
     Using reversible 
     jump algorithm, 

     Fixed k sampling 
     with evidence weights.
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Trans-dimensional inversion
Recent applications

• Climate histories
     Inferring ground surface temperature histories from 
     high precision borehole temperatures. (Hopcroft et al. 2008)

•Thermochronology
    Inferring cooling or erosion histories from spatially distributed 
Fission 
     track data. (Gallagher et al., 2005, 2006, Stephenson et al. 2006)

•Stratigraphic modelling
    Using borehole data on grain size and sediment thickness to infer 
sea-
     level change and sediment flux in a reservoir -> uncertainty on oil 

     production rates. (Charvin et al. 2008)

•Geochronology
    Inferring number and ages of distinct  geological events from 
    mixtures of rock ages. (Jasra et al., 2006)



30/31

Calculating the evidence
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But how easy is the evidence to calculate ?

• For small discrete problems it can be easy as in the previous example

• For continuous problems with k < 50. Numerical integration is possible 
using samples,     generated from the prior 

• For some linear (least squares) problems, analytical expressions can be found

• For large k and highly nonlinear problems – forget it !
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(Malinverno, 2002)

See Sambridge et al. (2006) for details



31/31

Trans-dimensional inverse problems are a natural extension 
to the fixed dimension Bayesian inference familiar to geoscientists. 

The ratio of the evidences for fixed dimensions is the key quantity
that allows fixed dimensional MCMC tools to be used in variable 
dimensions. (Conversely RJ-MCMC can be used to calculate the evidence).

The evidence is a transferable quantity that allows us to compare 
apples with oranges.

 Evidence calculations are possible in a range of classes. 
Transdimensional inverse problems are beginning to find applications in

  the Earth Sciences. 

 Even astronomers are calculating the evidence so why don’t we !

Conclusions

)|( kdp
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Trans-dimensional sampling:
A mixture modelling example

Fixed dimension MCMC simulations Reversible jump and weighted fixed k 
sampling
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An electrical resistivity example

True model Synthetic data

50 profiles found with posterior sampler

Posterior density

From Malinverno 
(2002)
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Elements of an Inverse problem

The data you have (and its noise) 
The physics of the forward 
problem
Your choice of parameterization
Your definition of a solution

What you get out depends on what you put in: 

A way of asking 
questions of data
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What is an inverse problem ?

Forward  problem

Estimation
problem

True model m

Data dAppraisal
problem

Estimated model m~

From Snieder & Trampert (2000)
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Irregular grids in seismology

From Sambridge, Braun & McQueen (1995)

Case example
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Probability density functions

)()|(),( ypyxpyxp ×=

Mathematical preliminaries: 

∫
∫
=
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dzzyxpyxp

dxyxpyp
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Joint and conditional PDFs

Marginal PDFs
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What do we get from Bayesian 
Inference ?

Generate samples whose 
density follows the posterior

)()|()( mpmdpm ∝ρ

The workhorse technique is 
Markov chain Monte Carlo
e.g. Metropolis, Gibbs sampling
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Self Adaptive seismic 
tomography

From Sambridge & Gudmundsson (1998) From Sambridge & Faletic (2003)
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Example: Measuring the mass of an 
object 

If we have an object whose mass, m,  we which to determine. Before we collect 
any data we believe that its mass is approximately 10.0 § 1µ g. In probabilistic 
terms we could represent this as a Gaussian prior distribution

p(mjd) / e
¡ 1

2(m¡ 10:96)2

1=5

p(m) =
1

p
2¼

e¡ 1
2(m¡ 10:0)2

Suppose a measurement is taken and a value 11.2 µ g is obtained, and the 

measuring device is believed to give Gaussian errors with mean 0 and σ = 0.5 µ g.

Then the likelihood function can be written

p(djm) =
1

0:5
p

2¼
e¡ 2(m¡ 11:2)2

The posterior PDF becomes a Gaussian centred at the value of 10.96 µ g with 

standard deviation σ = (1/5)1/2 ¼ 0.45 

p(mjd) =
1
¼

e¡ 1
2(m¡ 10:0)2¡ 2(m¡ 11:2)2

prior

Likelihood

Posterior
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Example: Measuring the mass of an 
object 

The more accurate new data has changed the estimate of m and 
decreased its uncertainty  

One data point problem 

p(mjd;H ) / p(djm;H ) £ p(mjH )

Conditional PDFs
Bayes’ rule (1763)

Posterior probability density / Likelihood  x Prior probability density

1702­1761

What is known before 
the data are collected

Measuring fit 
to data

What is known after 
the data are collected

Assumptions

model parametersdata
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Trans-dimensional sampling:
A regression example

Which curve produced that data ?

From Sambridge et al. (2006)
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Irregular grids in seismology

 Gudmundsson & Sambridge (1998)


