Datation ¹⁰Be et utilisation en géomorphologie

Vincent Regard, LMTG, Toulouse

regard@lmtg.obs-mip.fr

Résultats de... S. Carretier, M. Saillard, R. Vassallo...

LMT

Principe

Vincent Regard

Ser.

Le rayonnement cosmique

• **Rayonnement cosmique** : protons 99% + noyaux He 1% Composante solaire + extrasolaire

Le rayonnement cosmique dans l'atmosphère

Development of cosmic-ray air showers

La quasi-totalité de ce rayonnement est déviée par le champ magnétique terrestre ou absorbée par l'atmosphère

Variation avec la latitude (magnétique)

- **Production** (P(t)): varie en fonction de :
 - la latitude
 - l'altitude

Vincent Regard

40

Latitude

60

20

()

4 6 8 10 Elevation

Le rayonnement cosmique finalement arrive à la surface...

La **partie infime arrive à la surface** (moins de 10⁻³%) : particules secondaires (neutrons et muons)

¹⁰Be produit *in-situ* : réactions dans un cristal (par ex. quartz), le ¹⁰Be reste emprisonné dans la matrice cristalline

Surface

Production de 10Be*

Le rayonnement cosmique finalement arrive à la surface...

Autres cosmonucléides produits *insitu* : ³He, ¹⁴C, ²¹Ne, ²⁶Al, ³⁶Cl

Surface

Profondeur de pénétration : de l'ordre du mètre

La production

0 m

Production de 10Be*

2-3 m

- **Production** (P(t)): varie en fonction de :
 - la latitude
 - l'altitude
 - la profondeur d'enfouissement de l'échantillon
- **Désintégration** $(-\lambda.C(t))$: le ¹⁰Be est radioactif. λ = **1,35.10⁶ ans**

Utilisation 1 – datation de surfaces

Surfaces alluviales

Exemple de la transition Zagros-Makran

Localisation de la déformation

LM

Localisation de la déformation : cartographie et géométrie des failles actives => **déformation distribuée.**

Regard et al., Tectonics, 2004

Quantification de la déformation et de la cinématique => Régime transpressif

Offset of geomorphic features

Evidences

Evidence of quaternary formations crosscut by the faults

Regard et al., Geophys. J. Int., 2005

Offset of geomorphic features

Relative chronology of the quaternary deposits

Dating

Late quaternary formations

\rightarrow ¹⁰Be ages

They record when the alluvial formation deposition ended.

Method: sample recollection at the formation surface (Fan/Terrace)

LMT

Regard et al., Palaeo3., 2006

Vitesses des failles

Sec.

		V. V. de d [*] crochante convergence		de	Convergence (g [*] , ogr .)				
Faille				conver	convergence		DN		DE
		mm/a +/ -		mm/a	+/-	mm/a +/-		mm/a +/-	
Minab					0,40				
Zendan									
Pala mi									
TOTAL Minab -									
Zendan fault		4.68		5,56					
system	-				Star Star				
Sabzevaran		2,98	0,76	2,99	0,77	2,99	0,77	0,00	0,41
Kahnuj		2,31	0,95	2,34	0,99	2,26	0,97	0,57	0, 59
Jiroft		2,69	0,66	2,79	0,76	2,65	0,75	0,88	0,74
TOTAL Jiroft -									
Savzevaran		5,67		5,70	1,68	5,63	1,52	0,87	1,15
fault system				2 2 2 9	1 and the first of	Man maria	and well	a angel	
TOTAL	a			13,05	4,34	12,85	3,68	2,25	4,15
TOTAL	b			11,25	3,90	11,04	3,27	2,17	3,56
		-	The Section	Parties and				-	The second second

Vitesses ← rejets + datations

Regard et al., Geophys. J. Int., 2005

¹⁰Be: detail

- ⇒ 44.0 ± 3.4 ky
- ⇔ 20.1 ± 1.5 ky
- ⇒ 12.8 ± 1.0 ky
- \Rightarrow 8.4 ± 1.0 ky
- \Rightarrow 5.6 ± 0.6 ky

Link ¹⁰Be ages – climate

- End of deposition at the transition between but and we and cold and dry climatic periods
- → Exception: the 8.4ky event

Sec.

Regard et al., Palaeo3., 2006

Morphologie côtière

Datation du soulèvement de terrasses marines le long des côtes du Pérou et du Chili Thèse de Marianne Saillard

saillard@lmtg.obs-mip.fr

Terrasses à San Juan (S. Pérou)

http://www.utexas.edu/depts/grg/hudson/grg301c/hudson_grg_301c/schedule/4_water_geomorph_images/17_coastal/

Morphologie cotière

Au CHILI – ride Juan Fernandez

Type de surfaces: ⇒ Surface d'abrasion marine

Photo M. Saillard

Vincent Regard

Saillard et al., PhD, 2008

¹⁰Be des terrasses marines de la marge andine

Corrélations des terrasses marines aux stades isotopiques :

Vitesses variables

Saillard et al., Earth Planet Sc. Lett., accepté

See.

LMT

FEH : Faille El Huevo FDL : Faille de Lomas

See.

FSJ : Faille de San Juan FTH : Faille Tres Hermanas

Utilisation 2 – taux d'érosion

[10Be] = f(**CO**, taux production, taux erosion, profondeur, temps)

Datations

2. DATATION ¹⁰Be ET ²⁶A

Rayons cosmogéniques

date l'exposition des surfaces marines aux rayons cosmogéniques
a été utilisée et validée pour dater des terrasses alluviales en général
est utilisée pour dater des terrasses marine dans le monde

 $^{10}\mathbf{Be}$

Au Pérou

2. DATATION ¹⁰Be ET ²⁶Al

Surfaces d'abrasion marine

Chala

Terrasses marines de dépôts

Taux d'érosion des bassins versants

Taux d'érosion à l'échelle des bassins versants

Hypothèse : la concentration en cosmogéniques (ex. béryllium) des rivières reflète la concentration à la surface... c'est-à-dire le taux d'érosion

Taux d'érosion moyen=

Taux de production moyen

Concentration moyenne

Projet ANR ANDES -S. Carretier-

Pluviométrie annuelle (données compilées par Willmott et Weber 1998)

>1m/a

Analyses en cours (R. Vassallo, S. Carretier, E. Gayer)

Développement et utilisation Quoi échantillonner ? Que se passe-t-il dans une rivière ?

Questions

• Pour datation : quoi échantillonner ?

- Sable (moyenne héritage)
- Blocs (ne bougent pas)
- → importance des processus pré/post-dépôt
- Quel est le temps de transit ?

• Quelle est l'importance de l'histoire sur les pentes ?

LE PROBLEME DE LA PRE-EXPOSITION

exhumation...

.. stockage...

¹⁰Be hérit

D

... transport....

Modèle numérique

Ser.

Inclus -Histoire sur les pentes -Transport -Erosion des blocs/galets -Stockage Limites - Concentration au centre - Pas de fractionnement

Carretier et al., Quat. Geochr., in rev.

possible

Modèle numérique

Modèle stochastique particulaire : -20 points d'introduction de galets, avec des tailles différentes (0-15 cm, taille max pour laquelle le taux de transport est bien connu, Church and Hassan, 1992); taux d'érosion sur les pentes fixé à 0.01m/a -distribution de la concentration et des rayons à l'exutoire à partir du moment où ils sont tous <5cm

Paramètres de référence -Longueur 100 km, entre 4000 et 1000 m d'altitude -Taux d'abrasion k=1%/km (Jones and Humphrey, 1997; Attal and Lavé 2006).

Carretier et al., Quat. Geochr., in rev.

Distribution d'une population de cailloux

Longueur de la rivière 40 km

6000

8

6000

8000

3000

0

0.15

12.7 14.5

11

Frequency

0.15

duency

Part de l'héritage sur les pentes

Vallée étroite

Vallée large (5 fois la largeur du chenal actif)

Carretier et al., Quat. Geochr., in rev.

Implication : quantification de la charge de fond ?

Il semble qu'il y ait une relation permettant de calculer la vitesse de transport Ud grâce à la concentration en 10Be Or le flux **qs= L.Ud** où L est l'épaisseur de la couche active (bancs d'une rivière en tresse par ex.) \rightarrow accès à la charge de fond ?

Carretier et al., Quat. Geochr., in rev.

