Experimental	Set-up	Se
000		0

Semi-Brittle Behaviour of gypsum

Dehydration Tests

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusions

Brittle/Ductile Transition and Rupture Dynamics: Experiments on Gypsum

N. Brantut¹ A. Schubnel¹ Y. Guéguen¹ E. David² R.W. Zimmerman²

¹Laboratoire de Géologie, CNRS UMR 8538 École Normale Supérieure, Paris ²Royal School of Mines Imperial College, London

Strasbourg 15/06/2010

Motivation 0000	Experimental Set-up	Semi-Brittle Behaviour of gypsum	Dehydration Tests	Conclusions

- 2 Experimental Set-up
- Semi-Brittle Behaviour of gypsum
- 4 Dehydration Tests

Motivation	Experimental Set-up	Semi-Brittle Behaviour of gypsum	Dehydration Tests	Conclusions
Outline				

- 2 Experimental Set-up
- 3 Semi-Brittle Behaviour of gypsum
- 4 Dehydration Tests

Motivation

000

Semi-Brittle Behaviour of gypsum

Dehydration Tests

Conclusions

э

Christmas Tree Model

Figure: Brace W. & Kohlstedt D.L., JGR 1980.

This view is quasi-static: no influence of slip velocity, and no correlation with seimic/aseismic behaviour.

Motivation	Experimental Set-up	Semi-Brittle Behaviour of gypsum	Dehydration Tests	Conc
0000	000	00000000	0000000	

A Renewed View

Figure: Shimamoto T., JSG 1989.

Experiments on halite. The effect of slip and slip rate is clearly emphasized (out of equilibirum diagram ?). The relation with seismic/aseismic behviour is assumed.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Motivation	Experimental Set-up	Semi-Brittle Behaviour of gypsur
0000	000	00000000

Dehydration Tests

Conclusions

э

More Complexity

Figure: Brodie K. & Rutter E., APG 1985

Dehydration : weakening and then hardening (stiffer reaction products).

Motivation ○○○●	Experimental Set-up	Semi-Brittle Behaviour of gypsum	Dehydration Tests	Conclusions

Use new technologies to describe as precisely as possible the behaviour of rocks at the brittle/ductile transition.

Material Used

Our Approach

- Need for a rock that experience B/D transition and dehydration under laboratory conditions,
- Gypsum is OK.

Experimental Devices

• Triaxial Apparatus, P_c up to 100 MPa and T up to 200°C,

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

- Elastic wave velocities measurement,
- Continuous AE recording.

Motivation ○○○●	Experimental Set-up	Semi-Brittle Behaviour of gypsum	Dehydration Tests	Conclusions
•				

Use new technologies to describe as precisely as possible the behaviour of rocks at the brittle/ductile transition.

Material Used

Our Approach

- Need for a rock that experience B/D transition and dehydration under laboratory conditions,
- Gypsum is OK.

Experimental Devices

Triaxial Apparatus, P_c up to 100 MPa and T up to 200°C,

- Elastic wave velocities measurement,
- Continuous AE recording.

Motivation ○○○●	Experimental Set-up	Semi-Brittle Behaviour of gypsum	Dehydration Tests	Conclusions
•				

Use new technologies to describe as precisely as possible the behaviour of rocks at the brittle/ductile transition.

Material Used

Our Approach

- Need for a rock that experience B/D transition and dehydration under laboratory conditions,
- Gypsum is OK.

Experimental Devices

- Triaxial Apparatus, P_c up to 100 MPa and T up to 200°C,
- Elastic wave velocities measurement,
- Continuous AE recording.

Motivation 0000	Experimental Set-up	Semi-Brittle Behaviour of gypsum	Dehydration Tests	Conclusions
Outline				

- 2 Experimental Set-up
 - 3 Semi-Brittle Behaviour of gypsum
- 4 Dehydration Tests

Experimental Set-up

Semi-Brittle Behaviour of gypsum

Dehydration Tests

Conclusions

Tri-axial Rig @ ENS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Experimental Set-up

Semi-Brittle Behaviour of gypsum

Dehydration Tests

ヘロト 人間 とくほ とくほ とう

æ

Conclusions

Sample Set-up

Experimental Set-up

Semi-Brittle Behaviour of gypsum

Dehydration Tests

ヘロン 人間 とくほど 人ほど 一日

Conclusions

Sample Set-up

Experimental Set-up

Semi-Brittle Behaviour of gypsum

Dehydration Tests

Conclusions

AE Recording System

= 900

Experimental Set-up

Semi-Brittle Behaviour of gypsum

Dehydration Tests

Conclusions

Outline

- 2 Experimental Set-up
- Semi-Brittle Behaviour of gypsum
- 4 Dehydration Tests

Mo	otiv	ati	on	
00		C		

Semi-Brittle Behaviour of gypsum

Dehydration Tests

Conclusions

Stress-strain Behaviour

- Transition around $P_{\rm c} = 10$ MPa,
- Brittle behaviour: single shear band,
- Numerous stress drops during the "ductile" behaviour.

(日)

Mo	otiv	ati	on	
00		C		

Semi-Brittle Behaviour of gypsum

Dehydration Tests

Conclusions

Stress-strain Behaviour

- Transition around $P_{\rm c} = 10$ MPa,
- Brittle behaviour: single shear band,
- Numerous stress drops during the "ductile" behaviour.

(日)

Mo	otiv	ati	on	
00		C		

Semi-Brittle Behaviour of gypsum

Dehydration Tests

Conclusions

Stress-strain Behaviour

- Transition around $P_{\rm c} = 10$ MPa,
- Brittle behaviour: single shear band,
- Numerous stress drops during the "ductile" behaviour.

ヘロト ヘ戸ト ヘヨト

Mo	otiv	ati	on	
00		C		

Semi-Brittle Behaviour of gypsum

Dehydration Tests

Conclusions

Stress-strain Behaviour

- Transition around $P_{\rm c} = 10$ MPa,
- Brittle behaviour: single shear band,
- Numerous stress drops during the "ductile" behaviour.

・ロット (雪) (日) (日)

Experimental Set-up

Semi-Brittle Behaviour of gypsum

Dehydration Tests

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Conclusions

Microstructural Observations

Numerous shear bands at $P_c = 50$ MPa

Experimental Set-up

Semi-Brittle Behaviour of gypsum

Dehydration Tests

Conclusions

Microstructural Observations

Presence of plastic deformation (kinks) and crack opening

Experimental Set-up

Semi-Brittle Behaviour of gypsum

Dehydration Tests

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Conclusions

Microstructural Observations

Presence of plastic deformation (kinks) and crack opening

Experimental Set-up

Semi-Brittle Behaviour of gypsum

Dehydration Tests

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Conclusions

Microstructural Observations

Presence of plastic deformation (kinks) and crack opening

Mo	tivatior	1
00	00	

Semi-Brittle Behaviour of gypsum

Dehydration Tests

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions

Wave Velocity Data

- Active survey every 5 minutes.
- Relative measurements using cross-correlation technique.

Mo	tivat	io	n
00	00		

Semi-Brittle Behaviour of gypsum

Dehydration Tests

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions

Wave Velocity Data

- Active survey every 5 minutes.
- Relative measurements using cross-correlation technique.

Semi-Brittle Behaviour of gypsum

Dehydration Tests

Conclusions

Wave Velocity Data

Continuous, linear decrease of wave velocities with increasing axial strain.

Semi-Brittle Behaviour of gypsum

Dehydration Tests

(日)

ъ

Conclusions

Wave Velocity Data

Continuous, linear decrease of wave velocities with increasing axial strain.

Experimental Set-up

Semi-Brittle Behaviour of gypsum

Dehydration Tests

・ロット (雪) ・ (日) ・ (日)

э

Conclusions

Interpretation in Terms of Crack Density

- Linear evolution of crack density with increasing deformation.
- The material accumulates cracks without losing cohesion: typical semi-brittle behvaiour.

Experimental Set-up

Semi-Brittle Behaviour of gypsum

Dehydration Tests

・ コ ト ・ 雪 ト ・ 目 ト ・

ъ

Conclusions

Interpretation in Terms of Crack Density

- Linear evolution of crack density with increasing deformation.
- The material accumulates cracks without losing cohesion: typical semi-brittle behvaiour.

Motivation
occoExperimental Set-up
occoSemi-Brittle Behaviour of gypsum
occoDehydration Tests
occoCoLethal Weapon: Continuous Records (Mini Richter
System)

- AE activity has a peak just before the yield point,
- at RT: no correlation between AE and stress drops;
- at 70°C: all stress drops are accompanied with large AE.

・ コ ト ・ 雪 ト ・ 目 ト ・

Motivation
occoExperimental Set-up
occoSemi-Brittle Behaviour of gypsum
occoDehydration Tests
occoCoLethal Weapon: Continuous Records (Mini Richter
System)

- AE activity has a peak just before the yield point,
- at RT: no correlation between AE and stress drops;
- at 70°C: all stress drops are accompanied with large AE.

・ロット (雪) ・ (日) ・ (日)

Motivation
occoExperimental Set-up
occoSemi-Brittle Behaviour of gypsum
occoDehydration Tests
occoCoLethal Weapon: Continuous Records (Mini Richter
System)

- AE activity has a peak just before the yield point,
- at RT: no correlation between AE and stress drops;
- at 70°C: all stress drops are accompanied with large AE.

Experimental Set-up

Semi-Brittle Behaviour of gypsum

Dehydration Tests

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э.

Conclusions

Various Types of AE

- "regular" AE are short and at high frequency; they do not correspond with a macroscopic change of stress,
- AE that occur during a stress drop at high T are long and at low frequency.

Experimental Set-up

Semi-Brittle Behaviour of gypsum

Dehydration Tests

Conclusions

Various Types of AE

- "regular" AE are short and at high frequency; they do not correspond with a macroscopic change of stress,
- AE that occur during a stress drop at high T are long and at low frequency.

Experimental Set-up

Semi-Brittle Behaviour of gypsum

Dehydration Tests

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions

Duration of a Stress Drop Event

- the formation of a shear band correspond to a stress drop,
- a shear band accumulates damage in it and close to it,
- Ithis damage produces high frequency acoustic signal,

Experimental Set-up

Semi-Brittle Behaviour of gypsum

Dehydration Tests

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions

Duration of a Stress Drop Event

- the formation of a shear band correspond to a stress drop,
- a shear band accumulates damage in it and close to it,
- Ithis damage produces high frequency acoustic signal,

Experimental Set-up

Semi-Brittle Behaviour of gypsum

Dehydration Tests

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions

Duration of a Stress Drop Event

- the formation of a shear band correspond to a stress drop,
- a shear band accumulates damage in it and close to it,
- this damage produces high frequency acoustic signal,

Experimental Set-up

Semi-Brittle Behaviour of gypsum

Dehydration Tests

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions

Duration of a Stress Drop Event

- the formation of a shear band correspond to a stress drop,
- a shear band accumulates damage in it and close to it,
- this damage produces high frequency acoustic signal,
- we can estimate the duration of an event by measuring the duration of the HF activity within the large AE signal.

Mot	ivat	io	n
000	00		

Semi-Brittle Behaviour of gypsum

Dehydration Tests

・ロン ・四 と ・ ヨ と ・ ヨ と

æ

Conclusions

Processing

Figure: Low Frequency AE processing.

Motivation	Experimental Set-up	Semi-Brittle Behaviour of gypsum	Dehydration Tests	Conclusions
0000	000	0000000	0000000	

Scaling Laws

- There may be a correlation between the "rupture" duration and the amplitude of the signal...
- but nothing with the stress drop amplitude (∝ mechanical magnitude).

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

ж

Motivation	Experimental Set-up	Semi-Brittle Behaviour of gypsum	Dehydration Tests	Conclusions
0000	000	00000000	0000000	

Scaling Laws

- There may be a correlation between the "rupture" duration and the amplitude of the signal...
- but nothing with the stress drop amplitude (∝ mechanical magnitude).

Motivatio	n
0000	

Semi-Brittle Behaviour of gypsum

Dehydration Tests

Conclusions

Outline

- 2 Experimental Set-up
- 3 Semi-Brittle Behaviour of gypsum
- 4 Dehydration Tests

5 Conclusions

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Semi-Brittle Behaviour of gypsum

Dehydration Tests

Conclusions

э.

Compaction and Fluid Volume Change

Hydrostatic tests, drained at $P_{\text{fluid}} = 5 \text{ MPa.}$

Motivation	
0000	

Semi-Brittle Behaviour of gypsum

Dehydration Tests

Conclusions

э.

Reaction Progress

Reaction rate calculated from pore volumometry and compaction.

tivation	Experimental Set-up	Semi-Brittle Behaviour of gypsum	Dehydration Tests
00	000	00000000	0000000

Dramatic Decrease

Мо

Decrease of both V_p and V_s . Increase post-reaction due to time dependent compaction at elevated P_c .

Motivation 0000	Experimental Set-up	Semi-Brittle Behaviour of gypsum	Dehydration Tests	Conclusions
Poisso	on's Ratio			

Poisson's ratio actually *decrease* $! \rightarrow$ gypsum is remplaced by a stiffer phase (bassanite).

Motivation	Experimental Set-up	Semi-Brittle Behaviour of gypsum	Dehydration Tests	Conclusions

Differential, Self-Consistent Effective Medium:

$$\begin{cases} \frac{1}{K} \frac{dK}{d\Phi} &= -(1-\zeta) P_{\alpha}(\nu,\zeta), \\ \frac{1}{G} \frac{dG}{d\Phi} &= -Q_{\alpha}(\nu,\zeta), \end{cases}$$
(1)

where

Interpretation

$$\zeta = \frac{K_f}{K}.$$
 (2)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 \rightarrow Calculation of V_p , V_s as functions of porosity and pore aspect ratios (α). P_{α} , Q_{α} are complex functions of parameters.

otivation	Experimental Set-up
000	000

Semi-Brittle Behaviour of gypsum

Dehydration Tests

(日)

э

Conclusions

Inversion Results

Fit with rather opened cracks, $\alpha \leq 0.1$.

Motivation	Experimental Set-up	Semi-Brittle Behaviour of gypsum	Dehydration Tests	Conclusio
0000	000	00000000	00000000	

Full Waveforms

Large number of AEs during the dehydration, nothing before, nothing after.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

vation	Experimental Set-up	Semi-Brittle Behaviour of gypsum	Dehydration Tests
0	000	00000000	0000000

Conclusions

Locations

Mot

NB: Most AEs have implosive focal mechanisms

vation	Experimental Set-up	Semi-Brittle Behaviour of gypsum	Dehydration Tests
0	000	00000000	0000000

Locations

Mot

NB: Most AEs have implosive focal mechanisms.

Conclusions

・ロト・日本・日本・日本・日本・日本

Motivation 0000	Experimental Set-up	Semi-Brittle Behaviour of gypsum	Dehydration Tests	Conclusions

Outline

- 2 Experimental Set-up
- 3 Semi-Brittle Behaviour of gypsum
- 4 Dehydration Tests

Motivation	Experimental Set-up	Semi-Brittle Behaviour of gypsum	Dehydration Tests	Conclusions
0000	000	00000000	00000000	

- Gypsum has an interesting semi-brittle behaviour: suitable for the B/D transition study in the lab.
- There are large AEs associated with a plasticity induced phenomenon (shear banding and kinks).
- Dehydration is characterized by an important compaction and strong velocity decreases.

- Poisson's ratio tends to *decrease* during dehydration.
- AE are associated with compaction (implosions).

Motivation 0000	Experimental Set-up	Semi-Brittle Behaviour of gypsum	Dehydration Tests	Conclusions

- Gypsum has an interesting semi-brittle behaviour: suitable for the B/D transition study in the lab.
- There are large AEs associated with a plasticity induced phenomenon (shear banding and kinks).
- Dehydration is characterized by an important compaction and strong velocity decreases.

- Poisson's ratio tends to *decrease* during dehydration.
- AE are associated with compaction (implosions).

Motivation 0000	Experimental Set-up	Semi-Brittle Behaviour of gypsum	Dehydration Tests	Conclusions

- Gypsum has an interesting semi-brittle behaviour: suitable for the B/D transition study in the lab.
- There are large AEs associated with a plasticity induced phenomenon (shear banding and kinks).
- Dehydration is characterized by an important compaction and strong velocity decreases.

- Poisson's ratio tends to *decrease* during dehydration.
- AE are associated with compaction (implosions).

Motivation 0000	Experimental Set-up	Semi-Brittle Behaviour of gypsum	Dehydration Tests	Conclusions

- Gypsum has an interesting semi-brittle behaviour: suitable for the B/D transition study in the lab.
- There are large AEs associated with a plasticity induced phenomenon (shear banding and kinks).
- Dehydration is characterized by an important compaction and strong velocity decreases.

(日) (日) (日) (日) (日) (日) (日)

- Poisson's ratio tends to *decrease* during dehydration.
- AE are associated with compaction (implosions).

Motivation 0000	Experimental Set-up	Semi-Brittle Behaviour of gypsum	Dehydration Tests	Conclusions

- Gypsum has an interesting semi-brittle behaviour: suitable for the B/D transition study in the lab.
- There are large AEs associated with a plasticity induced phenomenon (shear banding and kinks).
- Dehydration is characterized by an important compaction and strong velocity decreases.

- Poisson's ratio tends to *decrease* during dehydration.
- AE are associated with compaction (implosions).