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Motivation

We have nominally continuous observed data
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Point of Inversion Analysis

We have two sorts of information.

1. Observed data

2. Prior Information (Jackson, 1979; Tarantola, 1987)
¢.g., density of the crust
velocity of P and S waves
smoothness 1n the slip

The relative importance between them 1s objectively
determined by ABIC from observed data




Algorithm for linear inversion analysis (1)
(Based on Yabuki & Matsu'ura, 1992)

0. Relation between data and model

d(x) = [G(xE)u(E)dE

1. Parametrization

M

u(x) = Eame(x)

m=1

u: model, quantity we want to know (e.g., slip distribution; density)
a,: model parameter

X, (x) : basis function X,
d: observed data
G: green's function

X,

express the model by super-
position of basis functions



Algorithm for linear inversion analysis (2)

2. Observation Equation

d=Ha+e d: data, e error, e~ N(0,0°E)

U | 1 .
p(dia;0?)=(2m0%) 2 |E| 2 exp [— 5 —(d-Ha) E"'(d-Ha)

3. Prior Informat10n (ex. smoothness condition)

gau/ax + (ou/oy) = a’Ga £ smal

p(a;p*) = (2npz)_2\G\2 exp [— ; aTGa]



Algorithm for linear inversion analysis (3)

Observation eq. Prior information
d=Ha+e r=a Ga
p(dla;o?) p(a;p°)

Bayes Thorem

p(a;o?,p’ Id) = cp(d la;0%) p(a; p°)

—(n+m)/2 1/2

(a*)"? ‘E‘_l/z IG|"" x exp

= c(2m72)

1 2
= s(a;o )}
s(a)=(d-Ha) E"'(d-Ha)+a’a'Ga

Maximization of probability p(a;o®,p” 1d) gives the optimal solution



p(a;o”,p’ |d) = cp(d 1a;0%) p(a; p*)

B s !

@B 6] xexp| - o)
s(a)=(d-Ha) E'(d-Ha)+a’a’Ga

2 2/ 2 . . . . .
o’ = 0>/ : ratio of variance between observed data and prior information

This expression includes various solution as a special case

/

(i) Enough data — a=(H"H)'H'd : least squares solution

\

i) G=1 — a= (HTH + azl)"lHTd : damped least squares solution

(i) G=G — a=MH'H+a’G)'H'd : Laplacian condition

/

Remaining problem: How do we determine o2?



Introduction of ABIC (Akaike, 1980)
(ABIC: Akaike's Bayesian Information Criterion)

Detinition of ABIC

ABIC = -2log L(0”, az‘ d) + 2 x (number of hyperparametes)

L: marginal likelihood for o and a”

L(az,az‘d) =fp(d la;0”) p(a;a”)da

The criterion of ABIC minimum — o°,a°

objectively determined from observed data



Characteristic of ABIC

Observed data Prior infor.
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Wright (2008)

For higher sampling rate,
the information from ob. data apparently increases.




ABIC e moder goes to fit to the data

An inverted result
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Slip distribution of Dinar earthquake

very unstable!
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For InSAR data

N38°10'

Observation Eq. : d =Ha + e

N38°5'

Observed data have spatially correlated
errors mainly due to atmospheric noise.

e ~N(0,0°E)

E. =ex (_ - / S) r; - distance between data i and j
y P y s : typical correlation length (~10km)

s(a;a’) =(d - Ha)T® (d-Ha)+oa’a’Ga

square of residual smoothness

By introducing covariance components,
we can properly control the information from ob. data
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Introduction of
covariance
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cf. Langbein & Johnson (1997); Segall et al. (2000); Lohman & Simons (2005)
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When observation error is so small .....
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seismic data

Is the information from observed data proportionally increases
according to the sampling rate?

—> DeanwerisNO




Inversion of slip distribution for Manyi, Tibet, ® 50

earthquake (1997, Mw=7.6) l:g
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Error and observation
equation

Observationeq.: = Ha + e

v
e=d-Ha
—e” +e

model

The error in obs. eq. 1s the sum of obs. error and modeling error.

e =d-d" - observation error

e — Ha — H’a : modeling error
significant correlation




seismic data

mathematically,

E =

o° 0

0O o

For higher sampling,
data have common model error.




Introduction of covariance components due to modeling error
(Yagi & Fukahata, 2008)

a, T (t) + ou(t)

1

K
discretization error : u(T) =
pa

When parameterizing the problem, discretization error inevitably emerges

Relation between data and model : d. (7) = f G, (t;t)u(t)dt
A

ou

Expression of the error in the observation eq. * P

e (1) = stl. (;7)0u(t)dt

Following the law of propagation of enors@

covariance components emerge.




Introducing the covariance components

> | solved the problem that the solution depends on the sampling rate

New Formulation Traditional Formulation

(wy) dig

(Yagi & Fukahata, 2008)




Reproduction of high frequency components

Traditional
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Note that the residual mean square 1s /ess 1n the traditional




Summary

Due to the development of computers, we can now 1nvert
continuous observed data with a very high sampling rate.

In mverting densely sampled observed data, the effects of
covariance components can be essential.

The error in the observation equation is the sum of
observation error and modeling error. So, even if we can
neglect observation error, we cannot escape from modeling
€Irors.

By mtroducing covariance components, we have solved a
sampling rate problem for InSAR and seismic data analysis.

More appropriate evaluation of errors (e.g., Green's function;

spatially different error) are still needed.




