

۵ο

EOST, le 7 février 2012

Du signal sismique à la dynamique des effondrements gravitaires

Anne Mangeney¹

Clément Hibert^{1,2}, Laurent Moretti¹, Gilles Grandjean², Antoine Lucas³, Pascal Favreau¹, Nikolai Shapiro¹, Yann Capdeville⁴, Eléonore Stutzmann¹, and François Bouchut⁵

¹Institut de Physique du Globe de Paris, Equipe de Sismologie, Paris, France
²Bureau des Recherches Géologiques et Minières, Orléans, France
³Division of Geological & Planetary Sciences, Caltech, Pasadena, USA
⁴Laboratoire de Planétologie et Géodynamique de Nantes, France
⁴LAMA, UMR-8050, Université Paris Est Marne la Vallée, France

Modeling of landslides and avalanches

Motivation

- Erosion processes at the surface of the Earth and other telluric planets
- Interaction with climatic, seismic and volcanic activity
- Hazard assessment

Proclastic Flows, Debris Avalanches and Lahar Moderate hazard Moderate h

Volume scale : $m^3 \rightarrow 10^5 \text{ km}^3$ Time scale : second \rightarrow year \neq Sources, \neq Topographies

Granular flows dynamics : from field to laboratory scale

Natural flows

Heterogeneous materials Few **data**: **deposit** area

Laboratory granular flows

Velocity and thickness measurements

Same physical processes ?

km³

cm³

Nathalie Thomas, IUSTI

Numerical modeling of granular flows

d<10µm

• Natural materials

• Modeling

2D thin layer model

3D continuum model

Discrete element model

Mean scale

Local scale

Grain scale

Reasonable computational cost Empirical flow law ... $\mu = \tan \delta$

Local flow law ???

High computational cost High computational cost

Particle size distribution ???

Thin Layer Approximation on 2D topography

Savage and Hutter, 1989

Thin Layer Approximation on 3D arbitrary topography

• Until very recently : **arbitrary extension of 1D equations** ...

First equations including these effects: « centrifugal » forces

Bouchut et al., 2003; Bouchut and Westdickenberg, 2004; Mangeney et al., 2007

Simulation of laboratory experiments

Good agreement between experimental and numerical results using **realistic friction angles** !

Mangeney et al., 2005

Hutter and co., Hungr, Iverson and Denlinger, Pouliquen and Forterre, ...

Pirulli et al., 2007

Simulation of natural flows

Simulation of **observed deposits** (Switzerland) using thin layer depth-averaged model with Coulomb friction law:

 $\mu = \tan \delta$: empirical description of the mean dissipation

Friction angle used in the model : $\delta = 17^{\circ}$

Small friction angle compared to angles typical of natural materials! $\theta_r \sim 35^{\circ}$

Origin of the high mobility of natural flows ??

Pirulli and Mangeney, 2008

Different physical processes

Fluid phase

Erosion of a granular layer

Listening to seismic signal from instabilities

Detection of instabilities and **prediction** of velocity and runout extent of landslides **Challenge** : explain and quantify the high mobility of natural landslides ...

Brodsky et al., 2003, Deparis et al. 2008, Favreau et al., 2010, Hibert et al., 2011...

?? Respective role of topography, involved mass, flow dynamics, wave propagation ??

From small rockfalls to big landslides

Rockfalls, La Réunion, 2007-2008

Hibert, Mangeney, Grandjean, Shapiro, 2011

Thurweiser landslide, Italie, 2004

Favreau, Mangeney, Lucas, Crosta, Bouchut, 2010

Monitoring rockfall activity in Crater Dolomieu

- **Strong volcanic activity :** 1 eruption occurring ~ every 9 months since 1998
- Dolomieu : main crater of the **Piton de la Fournaise volcano**, La Réunion island
- **Dense seismic network** set up by the OVPF + 15 stations (UNDERVOLC project)

Characteristics of rockfall seismic signal

• Seismic signal characteristics make it possible to distinguish rockfalls from V-T

Seismic signal duration ≈ granular flow propagation time

Monitoring rockfall activity in Crater Dolomieu

A major event : the april 2007 collapse

Regression lines and corresponding coefficients computed for each month

Scaling laws : potential energy versus flow duration

• Analytical development for a rectangular mass on a flat slope Mangeney et al., 2010

• Numerical simulation of granular flows over real topography using the code SHALTOP *Mangeney et al.*, 2007

From seismic energy to rockfall volume

Validation on the 16/05/07 rockfall

- Raw Signa - BF 2-7Hz

Observations

Modeling Time: 0 secs. 18 Thickness (m) 4 11 3 0 Estimated volume $5.8 \ 10^4 \ m^3$

$$E_{\rm s} = 2.3 \ 10^8 \ {\rm J}$$
 $E_{\rm s}/\Delta E_{\rm p} = 9 \ 10^{-4}$ $\Delta E_{\rm p} = 2.4 \ 10^{11} \ {\rm J}$
Computed volume
 $8.3 \ 10^4 \ {\rm m}^3$

Monitoring rockfall activity in Crater Dolomieu

Numerical simulation of landslide and seismic waves

Direct problem

Mangeney et al., 2005, 2007

Favreau et al., 2010

Time-dependent basal stress field applied on top of the terrain

$$\mathbf{T} = \rho g h \left(\cos \theta + \frac{\mathbf{u}_h^t \mathcal{H} \mathbf{u}_h}{g \cos^2 \theta} \right) \left(\mu \frac{u_X}{\|\mathbf{u}\|}, \mu \frac{u_Y}{\|\mathbf{u}\|}, -1 \right)$$

$$\mathbf{Curvature effects}$$

Numerical simulation of seismic waves

Fast Green's functions calculation with a discrete frequency-wavenumber method (*Kennet / Bouchon*)

 $\mathbf{T}(x, y, z, t)$

 $\lambda_1, \mu_1,
ho_1$

 $\lambda_3, \mu_3,
ho_3$

- Spatio-temporal distribution of stress field at the surface
- Topographic and complex media effects are neglected
- Elastodynamic equations in an horizontally stratified half-space
- Continuity conditions at each interface
- Vanishing conditions at $z = -\infty$

$$\begin{split} \lambda_{2}, \mu_{2}, \rho_{2} \\ u_{ij}(t, r, \theta) &= \sum_{n=0}^{2} R_{ijn}(\theta) \int_{\epsilon-i\infty}^{\epsilon+i\infty} dp \, e^{pt} \int_{0}^{\infty} dk \, T_{n}(p, k) J_{n}(kr) k \\ R_{ijn}(\theta) \text{ radiation pattern} \\ T_{n}(p, k) \text{ frequency-wavenumber response} \end{split}$$

Simulation of the Thurweiser landslide

STS2 Data

 $(L_{\text{source-station}} = 24 \text{ km})$

For T > 15 s, $\lambda = cT \approx 45$ km

Topographic and complex media effects on wave propagation are expected to be **small**

Simulation of the generated seismic waves

Curvature effects on the generated seismic waves

on the generated seismic signal

Friction coefficient and simulated seismic waves

Mt Steller rock-ice avalanche and associated landquake

Alaska, September 2005

Recorded by 7 seismic stations from 37 km to 623 km

Simulation of the Mt Steller rock-ice avalanche

• The two scenarios well match the deposit area

• Mass accumulation at the front with erosion effects

Moretti et al., 2011

Simulation of the Mt Steller landquake

The scenario with erosion better reproduces the observed waveform

Conclusion

- Seismic signal \rightarrow information on the temporal evolution of the volcano stability
- Scaling laws between seismic energy and signal duration
- Transfer ratio of potential energy to seismic energy \rightarrow volume = f (seismic energy)

• Near-field, long-period observations can **discriminate between alternative scenarios for flow dynamics**

• Estimation of the **basal friction** and **physical processes during the flow** can be inferred from simulation of the seismic signal

To do ...

Validation on well characterized events

• Systematic study of the **influence of the volume, topography, friction coefficient** on the simulated seismic signal

Coupling landslide and wave propagation models